<table>
<thead>
<tr>
<th>Room No.</th>
<th>Room No.</th>
<th>Lecture Number</th>
<th>Lecture Time</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Hall 7,ences[EdHS]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room14</td>
<td>A-101</td>
<td>Lecture Number</td>
<td>Lecture Time</td>
<td>Lecture Title</td>
</tr>
<tr>
<td>Room20</td>
<td>JIM-JO (A-307)</td>
<td>Lecture Number</td>
<td>Lecture Time</td>
<td>Lecture Title</td>
</tr>
<tr>
<td>Lecture Hall 7,ences[EdHS]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room14</td>
<td>A-101</td>
<td>Lecture Number</td>
<td>Lecture Time</td>
<td>Lecture Title</td>
</tr>
<tr>
<td>Room20</td>
<td>JIM-JO (A-307)</td>
<td>Lecture Number</td>
<td>Lecture Time</td>
<td>Lecture Title</td>
</tr>
</tbody>
</table>

The Timetable of the 163rd ISIJ Meeting

March 28 (Wed)

<table>
<thead>
<tr>
<th>Lecture Number</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-11:50</td>
<td>Coke making technology /Young engineer session of coke-making</td>
</tr>
<tr>
<td>13:30-17:00</td>
<td>Microstructure formation1-2</td>
</tr>
<tr>
<td>17:00-18:45</td>
<td>Crystal structure analysis [342-345] [10:30-11:50]</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>Banquet** (18:30-20:30 Rose Hotel Yokohama)</td>
</tr>
<tr>
<td>20:00-22:00</td>
<td>Poster Session for Students (12:00-15:00 University Hall)</td>
</tr>
</tbody>
</table>

March 29 (Thurs)

<table>
<thead>
<tr>
<th>Lecture Number</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-11:50</td>
<td>Process control for sintering1-2</td>
</tr>
<tr>
<td>11:15-12:00</td>
<td>Ferritic heat resisting steels1-2</td>
</tr>
<tr>
<td>13:00-15:30</td>
<td>Ferritic heat resisting steels2-3</td>
</tr>
<tr>
<td>15:45-17:30</td>
<td>Ferritic heat resisting steels3-4</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>Banquet** (18:30-20:30 Rose Hotel Yokohama)</td>
</tr>
<tr>
<td>20:00-22:00</td>
<td>Poster Session for Students (12:00-15:00 University Hall)</td>
</tr>
</tbody>
</table>

March 30 (Fri)

<table>
<thead>
<tr>
<th>Lecture Number</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-11:50</td>
<td>Blast furnace reactions1-2</td>
</tr>
<tr>
<td>13:00-15:30</td>
<td>Titanium and its alloys1-2</td>
</tr>
<tr>
<td>15:45-17:30</td>
<td>Titanium and its alloys2-3-4</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>Banquet** (18:30-20:30 Rose Hotel Yokohama)</td>
</tr>
<tr>
<td>20:00-22:00</td>
<td>Poster Session for Students (12:00-15:00 University Hall)</td>
</tr>
</tbody>
</table>

March 31 (Sat)

Meeting: Instrumentation, Control and System Engineering

March 29 (Thurs) 12:00-12:50 Room9 Processing for Quality Products

March 29 (Thurs) 12:00-13:00 Room11
High Temperature Processes

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Discussion Sessions</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cokemaking technology for low-quality and unused carbon resources</td>
<td>T. Shishido</td>
<td>1</td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>Development of the coke making technology using high-performance caking additive</td>
<td>T. Shishido</td>
<td>5</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td>Production of caking additive by low-quality coal refining</td>
<td>M. Sugano</td>
<td>9</td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td>Additive effects of several kinds of hydroaromatic compounds upon enhancement of fluidity of non- or slightly caking coal</td>
<td>J. Hayashi</td>
<td>13</td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td>Preparation of high strength coke from brown coal by means of binderless hot briquetting and subsequent carbonization</td>
<td>Y. Sekine</td>
<td>17</td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td>Coking technologies using heavy oil bitumen</td>
<td>K. Fukuda</td>
<td>21</td>
</tr>
<tr>
<td>D6</td>
<td></td>
<td>Analysis of defect generation behavior during plastic phase</td>
<td>K. Take</td>
<td>25</td>
</tr>
<tr>
<td>D7</td>
<td></td>
<td>Development of simultaneous simulation model of bubble nucleation, growth and coalescence in coke production process</td>
<td>R. Ashida</td>
<td>29</td>
</tr>
<tr>
<td>D8</td>
<td></td>
<td>Examination of co-pyrolysis behavior of low-grade coal and binder</td>
<td>N. Tsubouchi</td>
<td>33</td>
</tr>
<tr>
<td>D9</td>
<td></td>
<td>Influences of the nitrogen and sulfur present in coal on maximum Gieseler fluidity</td>
<td>Y. Kubota</td>
<td>37</td>
</tr>
<tr>
<td>D10</td>
<td></td>
<td>Evaluation of contraction rate and size of inerts in coal</td>
<td>Y. Ueki</td>
<td>41</td>
</tr>
<tr>
<td>D11</td>
<td></td>
<td>Coking technology for mixture of coal and woody biomass</td>
<td>Y. Saito</td>
<td>45</td>
</tr>
<tr>
<td>D12</td>
<td></td>
<td>Strength evaluation model for coke containing low-quality or unused carbon resources</td>
<td>A. Sharma</td>
<td>49</td>
</tr>
<tr>
<td>D13</td>
<td></td>
<td>Investigation of carbon structure at coal–binder interface by SEM–EDAX, Laser–Raman Mapping and XRD techniques</td>
<td>A. Sharma</td>
<td>49</td>
</tr>
</tbody>
</table>

Recent progress on advanced mathematical model of blast furnace

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Discussion Sessions</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D14</td>
<td></td>
<td>Development of mathematical model of blast furnace based on behaviors of dispersed phases</td>
<td>H. Nogami</td>
<td>53</td>
</tr>
<tr>
<td>D15</td>
<td></td>
<td>Development of DEM model for analyzing in-furnace phenomena of blast furnace</td>
<td>S. Ueda</td>
<td>57</td>
</tr>
<tr>
<td>D16</td>
<td></td>
<td>Dynamic simulation in packed bed of blast furnace using DEM–CFD</td>
<td>S. Natsui</td>
<td>61</td>
</tr>
<tr>
<td>D17</td>
<td></td>
<td>Application of MPS method to liquid flow modeling in blast furnace</td>
<td>K. Nishioka</td>
<td>65</td>
</tr>
<tr>
<td>D18</td>
<td></td>
<td>Trickle flow behavior in the lower part of blast furnace</td>
<td>L. H. Jeong</td>
<td>69</td>
</tr>
<tr>
<td>D19</td>
<td></td>
<td>Numerical simulation on liquid dripping from cohesion zone by MPS method</td>
<td>T. Kon</td>
<td>73</td>
</tr>
<tr>
<td>D20</td>
<td></td>
<td>Local blockage of fine particles transported by updraft through a packed bed</td>
<td>H. Kawai</td>
<td>77</td>
</tr>
<tr>
<td>D21</td>
<td></td>
<td>Simulation of crack formation in an anisotropic coke using discrete element method</td>
<td>S. Y. Kim</td>
<td>81</td>
</tr>
</tbody>
</table>

Environmental, Energy and Social Engineering

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Discussion Sessions</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D22</td>
<td></td>
<td>Automobile recycling from material industry’s perspective: Part1</td>
<td>K. Matsubae</td>
<td>85</td>
</tr>
<tr>
<td>D23</td>
<td></td>
<td>Nishiyama Commemorative Prize/Importance of scrap sorting technology for management of steel alloying element associated with the end of life vehicle recycling</td>
<td>N. Fujitsu</td>
<td>88</td>
</tr>
<tr>
<td>D24</td>
<td></td>
<td>Estimation on distribution of copper contents in steel scrap</td>
<td>Y. Takahashi</td>
<td>91</td>
</tr>
<tr>
<td>D25</td>
<td></td>
<td>Evaluation of material recyclability from end-of-life vehicle</td>
<td>E. Yanamoe</td>
<td>95</td>
</tr>
<tr>
<td>D26</td>
<td></td>
<td>Trade-off analysis between environmental impact and upgrading of scrap steel :Recyclability evaluation of scrap steel in terms of TMR</td>
<td>S. Kashiwakura</td>
<td>99</td>
</tr>
<tr>
<td>D27</td>
<td></td>
<td>Rapid determination of chromium in steel scraps using laser-induced plasma spectrometry</td>
<td>K. Nakajima</td>
<td>103</td>
</tr>
<tr>
<td>D28</td>
<td></td>
<td>Material flow analysis of nickel, chromium and molybdenum by using WIO–MFA model</td>
<td>H. Ohno</td>
<td>107</td>
</tr>
</tbody>
</table>

Instrumentation, Control and System Engineering

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Discussion Sessions</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D29</td>
<td>Advanced system integration for preserving, sharing and improving work quality in steel plants</td>
<td>T. Sawaragi</td>
<td>VOL. 24-634</td>
<td></td>
</tr>
<tr>
<td>D30</td>
<td>Development of a support system for manufacturing process design of steel plates</td>
<td>T. Shirasaka</td>
<td>VOL. 24-622</td>
<td></td>
</tr>
<tr>
<td>D31</td>
<td>Knowledge acquisition by using machine learning for production planning learning support system in steel production systems</td>
<td>I. Hatono</td>
<td>VOL. 24-626</td>
<td></td>
</tr>
<tr>
<td>D32</td>
<td>An agent-based approach for decision-support in production scheduling</td>
<td>H. Tamaki</td>
<td>VOL. 24-630</td>
<td></td>
</tr>
</tbody>
</table>
Advanced Tribological Studies on Hot Rolling

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D33</td>
<td>Influence of iron oxide on lubricating properties in hot rolling</td>
<td>S. Iida</td>
<td>111</td>
</tr>
<tr>
<td>D34</td>
<td>Behavior of coefficient of friction in hot rolling of steel sheet with different Si contents</td>
<td>Y. Satta</td>
<td>115</td>
</tr>
<tr>
<td>D35</td>
<td>A discussion on scale behavior in hot copper rolling</td>
<td>K. Hara</td>
<td>119</td>
</tr>
<tr>
<td>D36</td>
<td>Evaluation of work roll for hot rolling by rolling simulator</td>
<td>S. Yokusuka</td>
<td>121</td>
</tr>
<tr>
<td>D37</td>
<td>Formation condition of scale layer on work roll in hot steel rolling</td>
<td>K. Nakazawa</td>
<td>125</td>
</tr>
<tr>
<td>D38</td>
<td>Roll coating and characteristics of lubricity at hot rolling</td>
<td>Y. Kita</td>
<td>129</td>
</tr>
</tbody>
</table>

Research and Development Towards High-precision Simulation of Forming Processes

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D39</td>
<td>(Invited Lecture) Perspective on current feature and problems of plastic constitutive model</td>
<td>K. Ito</td>
<td>133</td>
</tr>
<tr>
<td>D40</td>
<td>Measurements of material function using biaxial tensile test and press simulation</td>
<td>S. Nakajima</td>
<td>137</td>
</tr>
<tr>
<td>D41</td>
<td>Influence of material strengthening on Bauschinger effect and shape fixability</td>
<td>T. Yoshida</td>
<td>141</td>
</tr>
<tr>
<td>D42</td>
<td>Improvement on CAE model for accurate torsional springback prediction in high strength part forming</td>
<td>A. Ishiwatari</td>
<td>145</td>
</tr>
<tr>
<td>D43</td>
<td>(Invited Lecture) Recent trend to improve prediction accuracy in forging simulation technology</td>
<td>S.-Y. Kim</td>
<td>149</td>
</tr>
<tr>
<td>D44</td>
<td>Development of FEM forging system for prediction of microstructure in hot forging of carbon steel</td>
<td>N. Yukawa</td>
<td>153</td>
</tr>
<tr>
<td>D45</td>
<td>Numerical simulations for dynamic=unsteady=unstable phenomena in HOT rolling process</td>
<td>Y. Nakamura</td>
<td>157</td>
</tr>
<tr>
<td>D46</td>
<td>Numerical simulation of ductile fracture behaviour using a microscopic model</td>
<td>K. Komori</td>
<td>161</td>
</tr>
</tbody>
</table>

Process Evaluation and Material Characterization

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D47</td>
<td>(Invited Lecture) Local structure and chemical state characterization of steels and relating materials using X-ray absorption spectroscopy</td>
<td>K. Shinoda</td>
<td>162</td>
</tr>
<tr>
<td>D48</td>
<td>Characterization of nano-sized precipitation in steel using TEM and XAFS</td>
<td>Y. Tanaka</td>
<td>166</td>
</tr>
<tr>
<td>D49</td>
<td>Factor analysis of the XPS spectra obtained from NiAl alloy</td>
<td>N. Ohtsu</td>
<td>170</td>
</tr>
<tr>
<td>D50</td>
<td>Evaluation of plastic strain with mechanical loading by x-ray line profile analysis</td>
<td>M. Kumagai</td>
<td>171</td>
</tr>
<tr>
<td>D51</td>
<td>Development of rapid X-ray diffraction system at high temperatures for observation of sintering</td>
<td>M. Kimura</td>
<td>175</td>
</tr>
<tr>
<td>D52</td>
<td>(Invited Lecture) Application of two dimensional detector to metallic material evaluation by using synchrotron radiation</td>
<td>T. Shobu</td>
<td>178</td>
</tr>
<tr>
<td>D53</td>
<td>Microstructural evolution of high-Mn austenitic steels with twinning-induced plasticity</td>
<td>S. Sato</td>
<td>181</td>
</tr>
<tr>
<td>D54</td>
<td>Characterization of microscopic strain and stress in polycrystalline material using white X-ray microbeam diffraction</td>
<td>E. P. Kwon</td>
<td>185</td>
</tr>
</tbody>
</table>
International Organized Sessions
High Temperature Processes
2012/03/29 Lecture Room 5

Innovations and future directions for BOF steelmaking processes

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Opening adress Y.Kobayashi(Tokyo Inst. of Tech.)</td>
</tr>
<tr>
<td>10:05</td>
<td>Chairperson: Y.Kobayashi(Tokyo Inst. of Tech.)</td>
</tr>
</tbody>
</table>
| 10:05 | **Int. 1 Development of simulation program for hot-metal dephosphorization processes**
 The activity of the ISIJ Research Group “Process simulation for dephosphorization of pig iron by multi-phases” — **Waseda Univ. OK.Ito · M.Mori** |
| 10:35 | **Int. 2 (Invited Lecture) Blasted droplet model of oxygen steelmaking**
 Swinburne Univ. of Tech. OG.Brooks, Univ. of Wollongong N.Dogan, McMaster Univ. K.Coley |
| 11:05 | **Int. 3 Effect of changes in slag basicity and stirring intensity on hot metal dephosphorization**
 NSC ON.Sasaki · Y.Ogawa · K.Miyamoto |
| 11:25 | **Int. 4 (Invited Lecture) Thermodynamic database and kinetic simulation for BOF process**
 McGill Univ. OL-H.Jung · M-A.Van Ende · W-Y.Kim |
| 13:10 | **Chairperson: N.Maruoka (Tohoku Univ.)** |
| 13:10 | **Int. 5 (Invited Lecture) Advances in converter technology**
 A new direction for research in the basic oxygen converter
 Tata Steel OC.McDonald |
| 13:40 | **Int. 6 Development of hot metal dephosphorization with CaO powder top blowing**
 Sumitomo Metals OT.Tamura · M.Miyata · Y.Higuchi, Formerly Sumitomo Metals T.Matsuo |
| 14:00 | **Int. 7 (Invited Lecture) The effect of solid particles on liquid viscosity and slag foaming**
 Royal Inst. of Tech. OD.Sichen |
| 14:40 | **Chairperson: N.Sasaki (NSC)** |
| 14:40 | **Int. 8 (Invited Lecture) Reduction of dephosphorization slags using slag modification method in a hot metal bath**
 Northeastern Univ. of China OM.Jiang · D.Wang · C.Liu |
| 15:10 | **Int. 9 Condensation of phosphorus as the 2CaO·SiO$_2$–3CaO·P$_2$O$_5$ solid phase in the CaO–FeO–SiO$_2$ flux system**
 The Univ. of Tokyo OH.Matsuura · X.Yang · X.Gao · F.Tsukihashi |
| 15:30 | **Int. 10 Influence of formation layer around CaO on the dissolution rate in steelmaking slag**
 Tohoku Univ. ON.Maruoka · A.Ishikawa · H.Shibata · S.Kitamura |
| 15:50 | Closing remark S.Kitamura (Tohoku Univ.) |
High Temperature Processes

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plenary Session</td>
<td>1 Coke cake compressibility in passing through narrowing space of chamber width</td>
<td>T.Nakagawa</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>2 Effect of coal brand on gasification rate of highly reactive coke in CO–CO₂ gas atmosphere</td>
<td>T.Nakamura</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>3 Development of carbon iron composite process</td>
<td>H.Sumi</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>4 Development of controlling method for carbon deposit on coke oven wall</td>
<td>S.Aizawa</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>5 Evaluation of aector of sulfur distribution in coke manufacturing</td>
<td>K.Nangoh</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>6 Effect of coal moisture and bulk density on shrinkage of coke</td>
<td>A.Kotani</td>
<td>Vol. 24–789</td>
</tr>
<tr>
<td></td>
<td>7 The problems and countermeasures against rising extrusion load</td>
<td>S.Koge</td>
<td>Vol. 24–786</td>
</tr>
<tr>
<td></td>
<td>8 Enhancement of the capacity for transporting coke to CDQ</td>
<td>H.Ishikawa</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>9 Numerical analysis of dust diffusion from coke oven plant</td>
<td>N.Saito</td>
<td>Vol. 24–788</td>
</tr>
<tr>
<td></td>
<td>10 Plant test of optimizing coke breeze coating condition at HPS process</td>
<td>T.Higuchi</td>
<td>Vol. 24–792</td>
</tr>
<tr>
<td></td>
<td>11 Void structure of granulated raw material bed with dry particles addition (Development of RF–MEBIOS return fine mesh embedding for iron ore sintering method) process=4</td>
<td>Y.Yamaguchi</td>
<td>Vol. 24–195</td>
</tr>
<tr>
<td></td>
<td>12 Effect of installed RF–MEBIOS process at Kishima No.3 sinter plant (Development of RF–MEBIOS process=5)</td>
<td>Y.Nakagawa</td>
<td>Vol. 24–196</td>
</tr>
<tr>
<td></td>
<td>13 (Scientific Achievement Merit Prize) Process study on iron ore sintering for improvements of resources flexibility and environmental load</td>
<td>E.Kasai</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 Effect of coke breeze distribution on combustion rate of quasi-paricles</td>
<td>H.Ohgi</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>15 Development of pot test with segregation charging (Improvement of pot test= II)</td>
<td>M.Hara</td>
<td>Vol. 24–795</td>
</tr>
<tr>
<td></td>
<td>16 Effect of localized vertical slit in sintering bed on sinter strength</td>
<td>T.Yamamoto</td>
<td>Vol. 24–796</td>
</tr>
<tr>
<td></td>
<td>17 (Nishiyama Commemorative Prize) Research activity on ironmaking for reduction of reducing agent ratio</td>
<td>S.Ueda</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>18 Kinetics of reduction of the simulated iron ore sinter by H₂–CO mixture</td>
<td>S.Ishiki</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>19 Effect of particle size on reduction rate from Fe₃O₄ to FeO of hematite and quaternary calcium ferrite mixtures</td>
<td>D.Noguchi</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>20 Influence of reducing gas composition on disintegration behavior of blast furnace burden</td>
<td>M.Mizutani</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>21 Theoretical prediction of cyclic steady state variation of gas concentration in blast furnace with layered burden structure</td>
<td>M.Kuwabara</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>22 Influence of a large amount of hydrogen on reaction behavior of a coke mixed bed under blast furnace simulated condition</td>
<td>K.Shizuo</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>23 Effect of reacted coke packed bed structure on slag hold-up after softening–melting test</td>
<td>K.Sunahara</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>24 Influence of gaseous sulfur on carburization rate to iron in CO–H₂ mixtures=III</td>
<td>Y.Suhara</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>25 Development of the kinetic model between metal, slag, refractory and inclusion during ladle refining</td>
<td>A.Harada</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>26 (Nishiyama Commemorative Prize) Formation mechanism of spined inclusions in stainless steels</td>
<td>H.Todoroki</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>27 A phenomenological investigation on the control of oxides at the interface using an electrochemical cell</td>
<td>W.Kim</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>28 Evolution and change of inclusions in Fe–Al–Ti steel at 1473K</td>
<td>W.Choi</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>29 Equilibrium of Al deoxidation in liquid Fe–Mn alloy</td>
<td>Y.Ogasawara</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>30 Effect of Fe addition on the activity of Si in Cu–Si liquid alloys at 1623K</td>
<td>K.Morita</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>31 Influence of slag basicity on Mn and Fe equilibrium distribution between liquid Fe–Mn–Ca oxysulfide system and molten slag</td>
<td>S.Kim</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>32 Leaching of Zn from CaO treated EAF dust by NH₄Cl solution</td>
<td>K.Maruyama</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>33 Selective chlorination reaction of Cu₂O and FeO mixture by CaCl₂</td>
<td>X.Hu</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>34 Removal of copper from steel scrap by hot plastic deformation</td>
<td>Y.Tamura</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>35 The influence of the bloom cooling on the crack formation of B–containing steel billet</td>
<td>T.Hirosumi</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>36 High speed casting technology of hypoperitectic steels for round billet caster</td>
<td>T.Mukai</td>
<td>Vol. 24–799</td>
</tr>
<tr>
<td></td>
<td>37 Improvement of quality for low alloy steel in round billet casting</td>
<td>T.Sato</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>38 Formation mechanism of center–line segregation and negative segregation in center of bloom continuously cast by BL–CC</td>
<td>K.Isobe</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>39 Formation mechanism of the center line macrosegregation with bridging</td>
<td>T.Murao</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>40 Structure control of steels using electromagnetic fields</td>
<td>K.Iwai</td>
<td>250</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>41</td>
<td>Removal of solid particles from stirred liquid under ultrasound irradiation condition</td>
<td>K. Okumura</td>
<td>251</td>
</tr>
<tr>
<td>42</td>
<td>Synthesis of pseudo-zeolite particles from fly ash</td>
<td>T. Kozuka</td>
<td>252</td>
</tr>
<tr>
<td>43</td>
<td>Manufacture of monodispersed silicon balls for solar cells by intermittent electromagnetic force</td>
<td>A. Minagawa</td>
<td>253</td>
</tr>
<tr>
<td>44</td>
<td>In-situ analysis of emulsified droplet velocity in Pb-Salt system</td>
<td>D. Y. Song</td>
<td>254</td>
</tr>
<tr>
<td>45</td>
<td>In-situ analysis of the precipitation in second phase of silica doped wustite</td>
<td>N. Ishikawa</td>
<td>255</td>
</tr>
<tr>
<td>46</td>
<td>Observation of bubbles passing the water/mercury interface by high intensity X-ray transmission</td>
<td>E. Shimakawa</td>
<td>256</td>
</tr>
<tr>
<td>47</td>
<td>Wettability model considering interfacial energetics in moving particle semi-implicit method</td>
<td>S. Natsui</td>
<td>257</td>
</tr>
<tr>
<td>48</td>
<td>Dynamic behavior of spheres vertically penetrating into a water bath</td>
<td>Y. Sakai</td>
<td>258</td>
</tr>
<tr>
<td>49</td>
<td>Spout eye formed at slag layer composed of water-repellent low-density particles in a cylindrical vessel with bottom bubbling</td>
<td>A. Maruyama</td>
<td>259</td>
</tr>
<tr>
<td>50</td>
<td>Study of accuracy on grid-free CFD techniques (Implementation of SPH method against vortex particle method)</td>
<td>Y. Ueda</td>
<td>260</td>
</tr>
<tr>
<td>51</td>
<td>Cold model study on liquid-liquid mass transfer by mechanical stirring</td>
<td>S. Horiuchi</td>
<td>261</td>
</tr>
<tr>
<td>52</td>
<td>Improvement of gas injection refining under eccentric mechanical stirring</td>
<td>L. Yan</td>
<td>262</td>
</tr>
<tr>
<td>53</td>
<td>Absorption of injected gas under eccentric mechanical stirring</td>
<td>L. Yan</td>
<td>263</td>
</tr>
<tr>
<td>54</td>
<td>Particle-based numerical analysis of spray water flow in secondary cooling of continuous casting machines</td>
<td>N. Yamasaki</td>
<td>264</td>
</tr>
<tr>
<td>55</td>
<td>Hot ductility of coarse-grained high Mn steel</td>
<td>S. B. Jeon</td>
<td>265</td>
</tr>
<tr>
<td>56</td>
<td>(ISIJ Research Promotion Grant) Effect of high-temperature oxidation on the structures of Ni-Al microchannel lining layers</td>
<td>T. Ohmni</td>
<td>266</td>
</tr>
<tr>
<td>57</td>
<td>The effect of oxygen content on the morphology of the scale/metal interface of the IF steel ingot</td>
<td>T. Morohoshi</td>
<td>267</td>
</tr>
<tr>
<td>58</td>
<td>Development of EMBr/EMS multifunction mold</td>
<td>N. Okada</td>
<td>268</td>
</tr>
<tr>
<td>59</td>
<td>Quality improvement of continuously cast slab by EMBr/EMS multifunction mold</td>
<td>Y. Inoue</td>
<td>269</td>
</tr>
<tr>
<td>60</td>
<td>Distribution of defects in slab and suppression of unbalanced flow by electromagnetic brake</td>
<td>K. Furumai</td>
<td>269</td>
</tr>
<tr>
<td>61</td>
<td>Clogging mechanism of submerged entry nozzle in continuous casting process of ultra low carbon steel</td>
<td>J. Yang</td>
<td>270</td>
</tr>
<tr>
<td>62</td>
<td>Development of anti-alumina-clogging materials characterized by reaction with molten steel (2nd report)</td>
<td>M. Ogata</td>
<td>270</td>
</tr>
<tr>
<td>63</td>
<td>Air tight tundish sliding gate system</td>
<td>H. G. Lee</td>
<td>271</td>
</tr>
<tr>
<td>64</td>
<td>New alumina-graphite refractory to reinforce electro-chemical effect of anti-clogging SEN technology (Development of SEN anti-clogging technology by electrochemistry-6)</td>
<td>Y. Tsukaguchi</td>
<td>272</td>
</tr>
<tr>
<td>65</td>
<td>Quality improvement by new material SEN to reinforce electro-chemical effect (Development of SEN anti-clogging technology by electrochemistry-7)</td>
<td>S. Ohga</td>
<td>273</td>
</tr>
<tr>
<td>66</td>
<td>Mechanism for sintering of alumina particles in molten iron (Development of SEN anti-clogging technology by electrochemistry-8)</td>
<td>M. Nakamoto</td>
<td>274</td>
</tr>
<tr>
<td>67</td>
<td>Development of fluorine-free mold flux</td>
<td>N. Takahira</td>
<td>275</td>
</tr>
<tr>
<td>68</td>
<td>Ascent of crystallizing speed of high viscosity mould flux (Crystallization of perovskite and melilité-1)</td>
<td>Y. Tsukaguchi</td>
<td>276</td>
</tr>
<tr>
<td>69</td>
<td>Measurement of crystallization of mould flux by capacitance method (Crystallization of perovskite and melilité-2)</td>
<td>Y. Ohta</td>
<td>277</td>
</tr>
<tr>
<td>70</td>
<td>Influence of mold flux on growth of solidified shell in continuous casing mold</td>
<td>M. Hanao</td>
<td>278</td>
</tr>
<tr>
<td>71</td>
<td>Effect of the mixing ratio of metallic iron and CaO on the melting behavior of the sintering bed</td>
<td>K. Fujino</td>
<td>279</td>
</tr>
<tr>
<td>72</td>
<td>Production of carbon included sinter ore and evaluation of its reactivity in blast furnace atmosphere</td>
<td>C. Kamijo</td>
<td>280</td>
</tr>
<tr>
<td>73</td>
<td>Production technology of pre-reduced iron briquette for blast furnace use</td>
<td>H. Sato</td>
<td>281</td>
</tr>
<tr>
<td>74</td>
<td>Strengthen mechanism of partial reduced iron</td>
<td>H. Hashimoto</td>
<td>282</td>
</tr>
<tr>
<td>75</td>
<td>The taphole clay development for continuous tapping operation in blast furnace</td>
<td>W. K. Kim</td>
<td>283</td>
</tr>
<tr>
<td>76</td>
<td>High efficiency scrap-melting operation using all BF coke by 2-stage tuyere shaft furnace</td>
<td>A. Shinotake</td>
<td>284</td>
</tr>
<tr>
<td>77</td>
<td>Probing the inside of blast furnace by cosmic-ray muon radiography using nuclear emulsion-II</td>
<td>A. Shinotake</td>
<td>285</td>
</tr>
<tr>
<td>78</td>
<td>(Nishiyama Commemorative Prize) Analysis of effect of burden properties on blast furnace operation by mathematical model</td>
<td>Y. Ujihara</td>
<td>286</td>
</tr>
<tr>
<td>79</td>
<td>The first plant trial of carbon composite agglomerate containing high carbon content (Development of RCA, reactive coke agglomerate-1)</td>
<td>K. Higuchi</td>
<td>287</td>
</tr>
<tr>
<td>80</td>
<td>The influence of carbon composite iron ore on reducing agent rate of blast furnace; The long-term trial (Development of RCA, reactive coke agglomerate-2)</td>
<td>H. Yokoyama</td>
<td>288</td>
</tr>
<tr>
<td>81</td>
<td>(ISIJ Research Promotion Grant) Contribution of direct reduction to carbothermic reduction for different iron oxides</td>
<td>T. Murakami</td>
<td>289</td>
</tr>
<tr>
<td>Paper Title</td>
<td>Authors</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>82 Carbothermic reduction and dephosphorization of high phosphorus oolitic hematite by lime and soda fluxing</td>
<td>G.Li</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>83 Reaction analysis in ununiform packed bed by DEM-CFD</td>
<td>R.Shibasaki</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>84 3-dimensional mathematical model in blast furnace using Eulerian–Lagrangian coupled method</td>
<td>S.Natsui</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>85 Permeability analysis on coke mixed charging by softening test model by DEM</td>
<td>H.Kurosawa</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>86 Gas flow analysis on mixed coke charging in blast furnace</td>
<td>T.Ariyama</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>87 Restoration after the great east Japan earthquake at Kasahima No.1 and No.3 blast furnace</td>
<td>H.Choshi</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>88 The analysis of burden sedimentary structure in blast furnace by scale model (Development of burden distribution control technology–3)</td>
<td>M.Kadowaki</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>89 Analysis of particle behavior in bell–less charging process by using DEM and measuring actual one in scale–down experimental equipment (Development of burden distribution control technology–4)</td>
<td>H.Mio</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>90 Cold model experiment on gas permeability in contracted packed bed with liquid</td>
<td>K.Ichikawa</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>91 Development of visualization of system of sintering machine–1</td>
<td>M.Yano</td>
<td>VOL.24–782</td>
<td></td>
</tr>
<tr>
<td>92 Development of the visualization system of sintering machine–2</td>
<td>T.Shinohara</td>
<td>VOL.24–783</td>
<td></td>
</tr>
<tr>
<td>93 Effect of high strength iron ore granules on the productivity and sintercake structure (Study on granulation mechanism of raw materials–6)</td>
<td>S.Kawachi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94 Formation process of LiH by reacting Li metal with hydrogen</td>
<td>Y.Suzuki</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>95 Formation kinetics of iron oxide in mould flux for continuous casting</td>
<td>M.Wang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Occlusion mechanism of liquid Cu into solid FeO for prevention of hot shortness of steel</td>
<td>S.Ishikawa</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>97 Relationship between cutting resistance and wettability for coating material and work piece</td>
<td>H.Hashikura</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>98 Surface tension measurement of the Fe–Si–C alloys by the maximum bubble pressure method</td>
<td>T.Yoshikawa</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>99 (ISIJ Research Promotion Grant)Density and local structure of liquid Fe–Si alloys</td>
<td>A.Mizuno</td>
<td>VOL. 24–822</td>
<td></td>
</tr>
<tr>
<td>100 The relation between thermal conductivity and NB0/T for R–Na2O–SiO2(R=Al2O3,CaO)melts</td>
<td>T.Kowatari</td>
<td>VOL. 24–829</td>
<td></td>
</tr>
<tr>
<td>101 Relation between ultrasonic velocity and molar volume on molten silicates</td>
<td>Y.Kitamura</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>102 (ISIJ Young Researcher Award)Measurements of thermophysical properties and the application to research of iron and steel making</td>
<td>R.Endo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 Heat capacity measurement for liquid cobalt using noncontact modulation laser calorimetry</td>
<td>J.Takano</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>104 Effect of the aggregation degree of dispersed particles on the viscosity of suspension</td>
<td>S.Haruki</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>105 Viscous behavior of alumina rich calcium–silicate based mold fluxes and its correlation to the melt structure</td>
<td>L.Sohn</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>106 Viscosity evaluation of SiO2–based multicomponent slag by quasi–chemical viscosity model</td>
<td>M.Suzuki</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>107 Viscosity evaluation of slag containing amphoteric oxide by quasi–chemical viscosity model</td>
<td>M.Suzuki</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>108 High efficiency dephosphorization technique in decarburization converter utilizing FeO dynamic control</td>
<td>Y.Ogasawara</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>109 Development of dephosphorization technique on high–carbon steel at LD–OTB</td>
<td>A.Tazuke</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>110 Mechanism of heat transfer to molten metal with heated powder raw materials by burner</td>
<td>G.Okuyama</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>111 LD steelmaking method in the use of limestone</td>
<td>H.Li</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>112 Influence of bottom bubbling rate on formation of metal emulsion in Al–Cu alloy/salt system</td>
<td>D.Y.Song</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>113 Effect of flux composition on desulfurization reaction rate of molten steel</td>
<td>A.Matsuzawa</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>114 A CFD–based mathematical model for decarburization process of ultra–low carbon Al killed steel during RH refining</td>
<td>J.Zhang</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>115 Sliding gate valve system for electric arc furnaces</td>
<td>M.Ogata</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>116 Production rate of Mg vapor in the process of in–situ desulfurization of hot metal</td>
<td>X.Ren</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>117 Effect of immersion cylinder on desulfurization behavior of hot metal by mechanical stirring</td>
<td>T.Nakasuga</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>118 (Nishiyama Commemorative Prize)Mechanism of iron oxide reduction in the iron bath with stirring</td>
<td>M.Matsuo</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>119 Phase relationship for the CaO–SiO2–FeO–5mass%P2O5 slag system saturated with P2O5–containing solid solution at 1673K with low oxygen partial pressure</td>
<td>X.Gao</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>120 Effect of new De–P furnace start up for refractories of De–C furnace</td>
<td>T.Umegane</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>121 Fracture mechanics investigation of refractories in steelmaking</td>
<td>Y.Hino</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>122 Prediction of converter bricks spoilage by elastoplastic analysis</td>
<td>T.Yamada</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>123 Development of cement–free castable</td>
<td>N.Takahashi</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>124 Kinetics of solid–liquid interface by a large–scale molecular dynamics simulation</td>
<td>Y.Shibuta</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>125 Permeability of Fe–(25ppm–0.3mass%)C steels</td>
<td>T.Kondo</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>126 Expression of collision and rearrangement of grains on macroscopic model for shear deformation of semisolid</td>
<td>S.Morita</td>
<td>326</td>
<td></td>
</tr>
</tbody>
</table>
Environmental, Energy and Social Engineering

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Plenary Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>Plenary Session</td>
<td>Removal of sulfur from coal in bacterial process</td>
<td>Y. Yao</td>
<td>335</td>
</tr>
<tr>
<td>136</td>
<td>Plenary Session</td>
<td>Utilization of waste organic substances for biological denitrification</td>
<td>T. Yamaguchi</td>
<td>336</td>
</tr>
<tr>
<td>137</td>
<td>Plenary Session</td>
<td>Bio–Metallurgical approach to the ironmaking process at ancient Japan</td>
<td>Y. Sasaki</td>
<td>337</td>
</tr>
<tr>
<td>138</td>
<td>Plenary Session</td>
<td>Integrated coal pyrolysis–reforming using hot steelmaking slag for carbon composite and syngas production</td>
<td>R.B. Cahyono</td>
<td>338</td>
</tr>
<tr>
<td>139</td>
<td>Plenary Session</td>
<td>Removal of sulfur from slags by sub–critical water treatment</td>
<td>K. Fujimoto</td>
<td>339</td>
</tr>
<tr>
<td>140</td>
<td>Plenary Session</td>
<td>Utilization of steelmaking slag by tar carbonization process</td>
<td>A.N. Rozhan</td>
<td>340</td>
</tr>
<tr>
<td>141</td>
<td>Plenary Session</td>
<td>Influence of elution times on extraction of zinc of EAF dust into carboatic acid solution</td>
<td>T. Sasaki</td>
<td>341</td>
</tr>
<tr>
<td>142</td>
<td>Plenary Session</td>
<td>Influence of additive weight of slag on elution of oxidizing slag discharged from EAF stainless steelmaking</td>
<td>S. Yokoyama</td>
<td>342</td>
</tr>
<tr>
<td>143</td>
<td>Plenary Session</td>
<td>Dissolution mechanism of iron from slag–soil mixture into seawater</td>
<td>X. Zhang</td>
<td>343</td>
</tr>
<tr>
<td>144</td>
<td>Plenary Session</td>
<td>Greening of acid forest soil with BOF slag</td>
<td>K. Torii</td>
<td>344</td>
</tr>
</tbody>
</table>

Instrumentation, Control and System Engineering

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Plenary Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>Plenary Session</td>
<td>Comparison among wireless communication systems for measuring crack length in smart stress–memory patch</td>
<td>T. Shiraiwa</td>
<td>345</td>
</tr>
<tr>
<td>146</td>
<td>Plenary Session</td>
<td>The effect of materials and shapes on the measurement range of smart stress–memory patch</td>
<td>F. Yuan</td>
<td>346</td>
</tr>
<tr>
<td>147</td>
<td>Plenary Session</td>
<td>Development of an on–line evaluation system for weld seam of ERW pipes by using phased array UT</td>
<td>Y. Matsui</td>
<td>347</td>
</tr>
<tr>
<td>148</td>
<td>Plenary Session</td>
<td>Classification and quantitation of suspended dust from steel plants by color image analysis</td>
<td>Y. Umegaki</td>
<td>348</td>
</tr>
<tr>
<td>149</td>
<td>Plenary Session</td>
<td>Development of a Buckling detector in continuous annealing process for tin cold rolled strip</td>
<td>M. Kenmochi</td>
<td>349</td>
</tr>
<tr>
<td>150</td>
<td>Plenary Session</td>
<td>Analysis of cracking behavior in welding process by acoustical emission</td>
<td>F. Liu</td>
<td>350</td>
</tr>
<tr>
<td>151</td>
<td>Plenary Session</td>
<td>Three–dimensional microwave imaging of burden surface in blast furnace</td>
<td>X. Chen</td>
<td>351</td>
</tr>
<tr>
<td>152</td>
<td>Plenary Session</td>
<td>(Shiraiishi Commemorative Prize)Development of surface inspection techniques for steel–strip</td>
<td>A. Kazama</td>
<td>352</td>
</tr>
<tr>
<td>153</td>
<td>Plenary Session</td>
<td>Development of shape measurement technique in hot strip finishing mill</td>
<td>T. Kato</td>
<td>353</td>
</tr>
<tr>
<td>154</td>
<td>Plenary Session</td>
<td>Development of shape feedback control using shape meter in hot strip finishing mill</td>
<td>T. Ohta</td>
<td>354</td>
</tr>
<tr>
<td>155</td>
<td>Plenary Session</td>
<td>Development of coal distribution gimbal controller in FINEX</td>
<td>S.H. Lee</td>
<td>355</td>
</tr>
<tr>
<td>156</td>
<td>Plenary Session</td>
<td>Vibration control of a coil car by using final–state control</td>
<td>H. Tanabe</td>
<td>356</td>
</tr>
<tr>
<td>157</td>
<td>Plenary Session</td>
<td>(Shiraiishi Commemorative Prize)Temperature control technology for hot strip manufacturing process</td>
<td>S. Nakagawa</td>
<td>357</td>
</tr>
<tr>
<td>158</td>
<td>Plenary Session</td>
<td>Development of a training simulator for operations around the mold in continuous caster</td>
<td>H. Kitada</td>
<td>358</td>
</tr>
<tr>
<td>159</td>
<td>Plenary Session</td>
<td>Development of optimization method for continuous casting schedules for a plate mill</td>
<td>J. Mori</td>
<td>359</td>
</tr>
<tr>
<td>160</td>
<td>Plenary Session</td>
<td>Simulation of the coil design for ERW steel pipe</td>
<td>S. Kuyama</td>
<td>360</td>
</tr>
</tbody>
</table>

Processing for Quality Products

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Plenary Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>Plenary Session</td>
<td>High–speed cutting mechanism of powder metallurgy steel (Influence of cutting speed upon the effect of free–machining by adding manganese sulphide)</td>
<td>J. Shinozuka</td>
<td>356</td>
</tr>
<tr>
<td>162</td>
<td>Plenary Session</td>
<td>Effect of heat treatment on machinability of case hardening steels</td>
<td>T. Aiso</td>
<td>357</td>
</tr>
<tr>
<td>163</td>
<td>Plenary Session</td>
<td>Relation between microstructure of chip and machinability of carbon steel</td>
<td>Y. Katayama</td>
<td>358</td>
</tr>
<tr>
<td>164</td>
<td>Plenary Session</td>
<td>Machinability of low carbon lead–free–cutting steels</td>
<td>S. Yamamoto</td>
<td>359</td>
</tr>
</tbody>
</table>
Microstructure and Properties of Materials

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>Study on contact boundary conditions between work and tools</td>
<td>T.Yoshida</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>(Development of CAE for plasticity processing system with ultrasonic vibration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Study on vibration to the cutting direction induced by the lateral excitation of cutting tool</td>
<td>T.Yoshida</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>(Development of CAE for plasticity processing system with ultrasonic vibration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Load prediction model for low-speed two-dimensional vibration cutting</td>
<td>T.Yoshida</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>(Development of CAE for plasticity processing system with ultrasonic vibration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Effect of microstructure on gear cutting performance in case-hardening steel</td>
<td>M.Haritani</td>
<td>363</td>
</tr>
<tr>
<td>169</td>
<td>Improvement of residual stress of drawn wire and bar by skin pass drawing</td>
<td>R.Koyama</td>
<td>364</td>
</tr>
<tr>
<td>170</td>
<td>Effects of drawing conditions after the plating on corrosion resistance of Ni-plated steel wire</td>
<td>T.Hori</td>
<td>365</td>
</tr>
<tr>
<td>171</td>
<td>(ISIJ Research Promotion Grant)Formation on steel wire surface and application to lubrication in drawing</td>
<td>S.Takagishi</td>
<td>366</td>
</tr>
<tr>
<td>172</td>
<td>Study on challenges for analysis of multi-pass rolling</td>
<td>T.Yoshida</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>(Development of simulator for working history)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Large eddy simulation for transient flow in thin slab continuous casting mold</td>
<td>B.Li</td>
<td>368</td>
</tr>
<tr>
<td>174</td>
<td>Evaluation of material fracture by drawing and upsetting of bars and wires</td>
<td>K.Komori</td>
<td>369</td>
</tr>
<tr>
<td>175</td>
<td>(Shiraishi Commemorative Prize)Steel structure research for buildings emphasizing on light-gauge steel frames</td>
<td>R.Kanno</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Debonding strength evaluation based on the intensity of singular stress for adhesive joint</td>
<td>N.Noda</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>(Part1:Method of analysis for the intensity of singular stress)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Debonding strength evaluation based on the intensity of singular stress for adhesive joint</td>
<td>N.Noda</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>(Part2:Strength evaluation based on singular stress)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Numerical simulation of cleavage fracture facet formation in ferrite steel</td>
<td>K.Shibanuma</td>
<td>372</td>
</tr>
<tr>
<td>179</td>
<td>Investigation and improvement on the pipe wall thickness of mandrel mill rolling</td>
<td>T.Okamoto</td>
<td>373</td>
</tr>
<tr>
<td>180</td>
<td>Development of automatic measuring devices for 1226° HFERW pipes</td>
<td>A.Yonemoto</td>
<td>374</td>
</tr>
<tr>
<td>181</td>
<td>(Nishiyama Commemorative Prize)Development and application of advanced on-line accelerated cooling process</td>
<td>A.Fujibayashi</td>
<td>375</td>
</tr>
<tr>
<td>182</td>
<td>Numerical study on cooling characteristics of running hot steel plate investigation on cooling-water-supply nozzle's array</td>
<td>J.E.Park</td>
<td>376</td>
</tr>
<tr>
<td>183</td>
<td>Characteristics of heat transfer during impact of droplets on a hot surface</td>
<td>S.Okada</td>
<td>377</td>
</tr>
<tr>
<td>184</td>
<td>Influence of scale on SUS304 steel of hot rolling characteristics</td>
<td>K.Hara</td>
<td>378</td>
</tr>
<tr>
<td>185</td>
<td>Influence of oxide scale on deformation behaviour of steel in hot forging</td>
<td>R.Matsumoto</td>
<td>379</td>
</tr>
<tr>
<td>186</td>
<td>Reduction of Fe oxide on steel surface by additional elements</td>
<td>K.Ikeda</td>
<td>380</td>
</tr>
<tr>
<td>187</td>
<td>Scale cleaning with oblique water jet</td>
<td>S.Iida</td>
<td>381</td>
</tr>
<tr>
<td>188</td>
<td>New electrolytic timing line and tin free steel line of BAOSTEEL</td>
<td>G.Zhu</td>
<td>382</td>
</tr>
<tr>
<td>189</td>
<td>(Nishiyama Commemorative Prize)Production technology for high quality steel sheet</td>
<td>T.Hiruta</td>
<td>383</td>
</tr>
<tr>
<td>190</td>
<td>Property of thermal crown in work roll shift mill</td>
<td>S.Yamaguchi</td>
<td>384</td>
</tr>
<tr>
<td>191</td>
<td>Influence of skin-pass rolling conditions on surface texture transcription</td>
<td>Y.Fukazawa</td>
<td>385</td>
</tr>
<tr>
<td>192</td>
<td>Effects of work roll radius on skin-pass rolling of thin steel sheets</td>
<td>H.Kijima</td>
<td>386</td>
</tr>
<tr>
<td>193</td>
<td>Roughness transfer mechanism in skinpass rolling of thin steel sheets(0)</td>
<td>H.Kijima</td>
<td>387</td>
</tr>
<tr>
<td>194</td>
<td>Effect of oil drop entrainment in rolling process lubricated with O/W emulsion</td>
<td>Y.Yamanaka</td>
<td>388</td>
</tr>
<tr>
<td>195</td>
<td>Influence of emulsion supply conditions on plate-out oil film in cold rolling</td>
<td>N.Fujita</td>
<td>389</td>
</tr>
<tr>
<td>196</td>
<td>Improvement of galling property by addition of shell powder in lubricant</td>
<td>K.Abe</td>
<td>390</td>
</tr>
<tr>
<td>197</td>
<td>Degreasing behavior of Ca sulfonate on gold surface observed by SEIRAS</td>
<td>N.Nagase</td>
<td>VOL. 24~417</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>198</td>
<td>Numerical simulation on Charpy impact properties of TS 590MPa grade steel in ductile–brittle transition region</td>
<td>S.Goto</td>
<td>391</td>
</tr>
<tr>
<td>199</td>
<td>High-Cycle fatigue fracture behavior analysis for V–added microalloyed steels</td>
<td>S.Morooka</td>
<td>392</td>
</tr>
<tr>
<td>200</td>
<td>Effect of crack arrester on unstable ductile crack propagation in high-pressure gas pipelines</td>
<td>T.Fuji</td>
<td>VOL. 24~982</td>
</tr>
<tr>
<td>201</td>
<td>Difference of voids nucleation and growth processes between notchless and notched specimens in tensile test</td>
<td>S.Niigaki</td>
<td>VOL. 24~984</td>
</tr>
<tr>
<td>202</td>
<td>Prediction of crack extension on pierced edge of hot-rolled high strength steel sheets</td>
<td>Y.Takahashi</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>(Study on dominant factor of stretch flange–ability of hot–rolled high strength steel sheets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Effect of working condition on burring and tapping in TRIP sheet steels</td>
<td>A.Nagasaka</td>
<td>394</td>
</tr>
<tr>
<td>204</td>
<td>Development of new tensile test method with CCD camera in–situ measuring system to obtain true stress–true strain curve up to fracture</td>
<td>S.Torizuka</td>
<td>395</td>
</tr>
<tr>
<td>205</td>
<td>Influence of surface roughness before DLC deposition on sliding</td>
<td>T.Noda</td>
<td>396</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>206</td>
<td>Relationship between Ti,Mo contents and thermal stability of (TiMo)C precipitates in ferritic steel</td>
<td>T.Tanaka</td>
<td>397</td>
</tr>
<tr>
<td>207</td>
<td>Effect of Al and Ti on mechanical properties for martensitic precipitation hardening</td>
<td>K.Shimoda</td>
<td>398</td>
</tr>
<tr>
<td>208</td>
<td>Neutron diffraction during annealing of ultrafine-grained electrodeposited pure iron sheet</td>
<td>Y.H.Su</td>
<td>399</td>
</tr>
<tr>
<td>209</td>
<td>In situ crystallographic orientation observation during phase transformation of low alloy steels studied by neutron diffraction</td>
<td>P.G.Xu</td>
<td>400</td>
</tr>
<tr>
<td>210</td>
<td>Ausformed bainite transformation behavior studied by in situ neutron diffraction</td>
<td>W.Gong</td>
<td>401</td>
</tr>
<tr>
<td>211</td>
<td>Semi-quantitative analysis of effects of alloying elements on cementite dissolution during austenitization in low-carbon steels</td>
<td>T.Nishibata</td>
<td>402</td>
</tr>
<tr>
<td>212</td>
<td>Effect of Mn amount on VC precipitation of 0.3mass% V added medium carbon steels</td>
<td>T.Murakami</td>
<td>403</td>
</tr>
<tr>
<td>213</td>
<td>Critical Zener–Hollomon parameter for the occurrence of dynamic transformation of ferrite in 6Ni–0.1C steel</td>
<td>N.Park</td>
<td>404</td>
</tr>
<tr>
<td>214</td>
<td>Effect of cold working on creep properties of a 23Cr–45Ni–7W alloy</td>
<td>H.Okada</td>
<td>405</td>
</tr>
<tr>
<td>215</td>
<td>Effect of heat treatment on mechanical properties of Ni–based superalloy for steam turbine rotor</td>
<td>S.Miyashita</td>
<td>406</td>
</tr>
<tr>
<td>216</td>
<td>Effect of Al and Ti on mechanical properties of Ni–0.07C–13Co–9Mo–19Cr–0.1Ta–0.3Nb–Al–Ti alloys</td>
<td>K.Nemoto</td>
<td>407</td>
</tr>
<tr>
<td>217</td>
<td>Effect of & phase precipitation on mechanical properties in Ni based alloy</td>
<td>S.Oinuma</td>
<td>408</td>
</tr>
<tr>
<td>218</td>
<td>Microstructure and creep properties of the alloys with various Cr content strengthened by intermetallic compounds</td>
<td>S.Ishikawa</td>
<td>409</td>
</tr>
<tr>
<td>219</td>
<td>(Nishiyama Commemorative Prize)High-temperature low-cycle fatigue properties of NW6617 (Ni–22Cr–12Co–9Mo) nickel alloy plate</td>
<td>M.Hayakawa</td>
<td>Vol. 24–996</td>
</tr>
<tr>
<td>220</td>
<td>Experimental investigation of high temperature wear resistance of Co and Ni based superalloys</td>
<td>K.Imaizumi</td>
<td>410</td>
</tr>
<tr>
<td>221</td>
<td>Effect of stress–relief treatment on microstructure and mechanical properties in HR6W steel weld joint</td>
<td>K.Kubushiro</td>
<td>Vol. 24–997</td>
</tr>
<tr>
<td>222</td>
<td>Evaluation on plastic strain for the weld heat affected zone of austenitic stainless steels by EBSP</td>
<td>K.Nomura</td>
<td>411</td>
</tr>
<tr>
<td>223</td>
<td>Quantitative analysis of strengthenings mechanisms in a peak aged maraging steel</td>
<td>R.Tamura</td>
<td>412</td>
</tr>
<tr>
<td>224</td>
<td>Strength analysis on TiC dispersed steels by small angle X-ray scattering and nanoindentation</td>
<td>T.Maejima</td>
<td>413</td>
</tr>
<tr>
<td>225</td>
<td>Quantitative observation of carbon and nitrogen segregation at grain boundaries in ferritic steel by atom probe tomography</td>
<td>J.Takahashi</td>
<td>414</td>
</tr>
<tr>
<td>226</td>
<td>Correction of grain boundary concentration for carbon and nitrogen obtained by three- dimensional atom probe tomography</td>
<td>S.Takaki</td>
<td>415</td>
</tr>
<tr>
<td>227</td>
<td>(Nishiyama Commemorative Prize)Formable cold rolled sheet steel with ultra-high lankford value by lubricant hot rolling in ferrite region</td>
<td>S.Matsuoka</td>
<td>416</td>
</tr>
<tr>
<td>228</td>
<td>In situ observations of void formation during plastic deformation of a dual phase steel</td>
<td>M.Azuma</td>
<td>417</td>
</tr>
<tr>
<td>229</td>
<td>Effects of martensite transformation and its auto-tempering behaviour on mechanical properties of ultra high strength steel sheets</td>
<td>H.Matsuda</td>
<td>418</td>
</tr>
<tr>
<td>230</td>
<td>Phase–field simulation of recrystallization starting from EBSP texture measurements</td>
<td>Y.Suwa</td>
<td>419</td>
</tr>
<tr>
<td>231</td>
<td>Work hardening behavior of hot–rolled ferritic steel strengthened by fine carbides</td>
<td>N.Kosaka</td>
<td>420</td>
</tr>
<tr>
<td>232</td>
<td>Effects of thermo–mechanical processing on retained austenite characteristics of 0.2%C–1.5%Mn–1.5KSi–1.5Cr–0.5%Nb TRIP–aided martensitic steel</td>
<td>K.Sugimoto</td>
<td>421</td>
</tr>
<tr>
<td>233</td>
<td>Impact toughness of ultrahigh-strength TRIP–aided martensitic steels</td>
<td>J.Kobayashi</td>
<td>422</td>
</tr>
<tr>
<td>234</td>
<td>Microcracks of sheared edges on hot–stamped steel sheets</td>
<td>T.Nishibata</td>
<td>423</td>
</tr>
<tr>
<td>235</td>
<td>(JSJ Research Promotion Grant)Mechanism of shot peening for suppressing surface hot shortness in copper–containing steel–Influence of shot peening on the high temperature incipient oxidation</td>
<td>Y.Tanaka</td>
<td>424</td>
</tr>
<tr>
<td>236</td>
<td>(JSJ Research Promotion Grant)Effect of Ni addition on suppressing the surface hot shortness in high Cu–Sn containing steel</td>
<td>A.Takemura</td>
<td>425</td>
</tr>
<tr>
<td>237</td>
<td>(Nishiyama Commemorative Prize)Development of high-performance seamless pipes for OCTG and Line–pipe</td>
<td>K.Kondo</td>
<td>426</td>
</tr>
<tr>
<td>238</td>
<td>(Nishiyama Commemorative Prize)Clack behavior in rolling contact fatigue of subsurface initiation type</td>
<td>K.Hiraoa</td>
<td>427</td>
</tr>
<tr>
<td>239</td>
<td>Selective activation of the slip systems and fine-scale microstructure evolution in tensile–deformed lath martensite</td>
<td>T.Hayashi</td>
<td>428</td>
</tr>
<tr>
<td>240</td>
<td>RCF crack propagation behaviour from artificial defect in high strength steel</td>
<td>T.Makino</td>
<td>429</td>
</tr>
<tr>
<td>241</td>
<td>(Mishima Medal)Development of high–temperature corrosion resistant tube materials</td>
<td>N.Otsuka</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>High heat check resistance tool steel</td>
<td>K.Hashi</td>
<td>430</td>
</tr>
<tr>
<td>243</td>
<td>Modified P21 steel with a superior balance between hardness and toughness</td>
<td>H.Chinen</td>
<td>431</td>
</tr>
<tr>
<td>244</td>
<td>Effect of work hardening during piercing on the hole expansion ratio of DP steel (Quantification of large deformation with piercing in DP steel–1)</td>
<td>H.Shuto</td>
<td>432</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>245</td>
<td>Evaluation of fracture behavior of the punched edge surface of punched hole using holed tensile specimens of DP steel (Quantification of large deformation with piercing in DP steel-2)</td>
<td>K.S. Park</td>
<td>433</td>
</tr>
<tr>
<td>246</td>
<td>Local crystal orientation analysis of piercing region in DP steel (Quantification of large deformation with piercing in DP steel-3)</td>
<td>K.Ikeda</td>
<td>434</td>
</tr>
<tr>
<td>247</td>
<td>Mechanical characterization of piercing edge in DP steel by microscale tensile testing technique (Quantification of large deformation with piercing in DP steel-4)</td>
<td>H.Arai</td>
<td>435</td>
</tr>
<tr>
<td>248</td>
<td>Nano-mechanical characterization in the vicinity of pierced hole in DP steel (Quantification of large deformation with piercing in DP steel-5)</td>
<td>T.Ohura</td>
<td>436</td>
</tr>
<tr>
<td>249</td>
<td>Measurement of the distribution of martensite hardness by nano-indentation</td>
<td>C.Wakabayashi</td>
<td>437</td>
</tr>
<tr>
<td>250</td>
<td>Total-balance properties in air-cooled 0.1C–5Mn martensitic steel</td>
<td>T.Hanamura</td>
<td>438</td>
</tr>
<tr>
<td>251</td>
<td>The effect of carbon on deformation behavior of lath martensite in steel under uniaxial tensile loading</td>
<td>H.Na</td>
<td>439</td>
</tr>
<tr>
<td>252</td>
<td>Crystallographic analysis of hydrogen-related fracture surface in low carbon and medium carbon martensitic steel</td>
<td>A.Shibata</td>
<td>440</td>
</tr>
<tr>
<td>253</td>
<td>The role of hydrogen in hydrogen-induced “quasi-cleavage” fracture of lath martensitic steel</td>
<td>A.Nagao</td>
<td>441</td>
</tr>
<tr>
<td>254</td>
<td>Fatigue behavior of ultra-high strength mooring chain steel in sea water</td>
<td>J.Yin</td>
<td>442</td>
</tr>
<tr>
<td>255</td>
<td>Tensile deformation behavior of hydrogen charged ultra-high strength mooring chain studied by neutron diffraction</td>
<td>J.Yin</td>
<td>443</td>
</tr>
<tr>
<td>256</td>
<td>The effect of carbon segregation on the hydrogen-induced intergranular decohesion of iron: First-principles calculations</td>
<td>M.Yamaguchi</td>
<td>444</td>
</tr>
<tr>
<td>257</td>
<td>Hydrogen desorption profile change of zinc electronic galvanized steel in stress loading</td>
<td>R.Ohkuma</td>
<td>445</td>
</tr>
<tr>
<td>258</td>
<td>Influence of tempering temperature on hydrogen trapping behavior in high Si-added martensitic steel</td>
<td>S.Teramoto</td>
<td>446</td>
</tr>
<tr>
<td>259</td>
<td>Effect of dislocation stability on hydrogen absorption and delayed fracture properties of cold-drawn pearlitic steels</td>
<td>K.Noguchi</td>
<td>447</td>
</tr>
<tr>
<td>260</td>
<td>Hydrogen trapping sites at various lattice defects in α-iron with thermal desorption spectrometer detected from low-temperature</td>
<td>M.Kaneko</td>
<td>448</td>
</tr>
<tr>
<td>261</td>
<td>Strength improvement of 9CrODS ferritic steels by means of hot-rolling</td>
<td>S.Ukai</td>
<td>449</td>
</tr>
<tr>
<td>262</td>
<td>Creep remaining-life assessment of Gr.91 steel based on change in hydrogen desorption characteristics</td>
<td>H.Yamashita</td>
<td>450</td>
</tr>
<tr>
<td>263</td>
<td>3D analysis of the creep damage in the 9.3% Cr steel welded joint</td>
<td>H.Hoshino</td>
<td>451</td>
</tr>
<tr>
<td>264</td>
<td>Variation and fluctuation of creep rate of martensitic steel</td>
<td>M.Tamura</td>
<td>452</td>
</tr>
<tr>
<td>265</td>
<td>(Mishima Medal)Evaluation of long-term creep strength of ASME grades T/P92 type steels</td>
<td>K.Kimura</td>
<td>453</td>
</tr>
<tr>
<td>266</td>
<td>(Nishiyama Commemorative Prize)Creep strength enhancement of the W containing high Cr ferritic steel</td>
<td>Y.Hasegawa</td>
<td>454</td>
</tr>
<tr>
<td>267</td>
<td>The formation and dissolution of δ ferrite phase in modified 9Cr–1Mo steel</td>
<td>S.Kobayashi</td>
<td>455</td>
</tr>
<tr>
<td>268</td>
<td>Effect of heat treatment on microstructural change of Mod.9Cr–1Mo steel</td>
<td>Y.Tanaka</td>
<td>456</td>
</tr>
<tr>
<td>269</td>
<td>(Scientific Achievement Merit Prize)Alloy design of 9Cr steel for achieving prolonged creep life</td>
<td>F.Abe</td>
<td>457</td>
</tr>
<tr>
<td>270</td>
<td>Evaluation of long-term creep strength on base metal of ASME Grades 91,92 and 122 type steels</td>
<td>K.Kimura</td>
<td>458</td>
</tr>
<tr>
<td>271</td>
<td>Evaluation of long-term creep strength on welded joints of ASME grades 91,92 and 122 type steels</td>
<td>M.Yaguchi</td>
<td>459</td>
</tr>
<tr>
<td>272</td>
<td>(ISIJ Research Promotion Grant)Thermodynamic analysis of the Fe–Ti–S ternary system</td>
<td>H.Ohtani</td>
<td>460</td>
</tr>
<tr>
<td>273</td>
<td>Formulation of solidification and micro segregation model in multi component Fe–C alloys</td>
<td>T.Sawada</td>
<td>461</td>
</tr>
<tr>
<td>274</td>
<td>Simulation of diffusion controlled phenomena at the interface of α / γ diffusion couple of stainless steels</td>
<td>A.Seki</td>
<td>462</td>
</tr>
<tr>
<td>275</td>
<td>(ISIJ Research Promotion Grant)Phase-field simulation of ordered domain growth in D0₃ type Fe₃Al intermetallic compound</td>
<td>Y.Koizumi</td>
<td>463</td>
</tr>
<tr>
<td>276</td>
<td>Effect of magnetic property on the accuracy of induction heating simulation</td>
<td>H.Yuki</td>
<td>464</td>
</tr>
<tr>
<td>277</td>
<td>(ISIJ Research Promotion Grant)Structure and magnetic properties of Fe and Fe–B alloy thin films formed on MgO single-crystal substrates</td>
<td>Y.Asai</td>
<td>465</td>
</tr>
<tr>
<td>278</td>
<td>Structure and magnetostriction of NiFe,Ni,Co single-crystal thin films with fcc structure formed on Cu(100) single-crystal underlayers</td>
<td>T.Ohtani</td>
<td>466</td>
</tr>
<tr>
<td>279</td>
<td>(ISIJ Young Researcher Award)The effects of solute elements on toughness</td>
<td>M.Tanaka</td>
<td>467</td>
</tr>
<tr>
<td>280</td>
<td>Effect of small amount of carbon on dislocation strengthening in iron</td>
<td>Y.Tanaka</td>
<td>468</td>
</tr>
<tr>
<td>281</td>
<td>Variation of plastic deforming properties in stainless steel sheet under biaxial stress states and in-place reversal load</td>
<td>A.TakaraDA</td>
<td>469</td>
</tr>
<tr>
<td>282</td>
<td>Specimen geometry optimization for in-plane compression tests and tension/compression asymmetry of flow stress and r-value</td>
<td>N.Noma</td>
<td>470</td>
</tr>
<tr>
<td>283</td>
<td>Biaxial bulge test of high strength steel sheet with tensile strength of 590MPa</td>
<td>T.Hakoyama</td>
<td>471</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author(s)</td>
<td>Pages</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>284</td>
<td>Continuous measurement of biaxial large plastic deformation behavior of cold-rolled IF steel sheet using biaxial bulge testing method</td>
<td>F. Sugawara</td>
<td>469</td>
</tr>
<tr>
<td>285</td>
<td>Verification of accuracy of biaxial bulge test using finite element analysis</td>
<td>R. Enatsu</td>
<td>470</td>
</tr>
<tr>
<td>286</td>
<td>(Nishiyama Commemorative Prize) Improving the strength of high strength steels for automobile with preventing the fracture from its secondary phase</td>
<td>K. Makii</td>
<td>471</td>
</tr>
<tr>
<td>287</td>
<td>Stress partitioning behavior of multilayered steels measured by in situ neutron diffraction during tensile deformation</td>
<td>M. Ojima</td>
<td>24–995</td>
</tr>
<tr>
<td>288</td>
<td>Expansion of multilayered steel composites with improved strength–ductility combination</td>
<td>S. Nambu</td>
<td>24–993</td>
</tr>
<tr>
<td>289</td>
<td>(ISIJ Research Promotion Grant) 4D stress analysis on yielding and work-hardening behavior for high strengthened steel sheet in automotive use</td>
<td>S. Morooka</td>
<td>472</td>
</tr>
<tr>
<td>290</td>
<td>Crystallographical analysis of Laves phase in ferritic stainless steel</td>
<td>R. Kihara</td>
<td>473</td>
</tr>
<tr>
<td>291</td>
<td>Lengthening kinetics of ferrite plates in high strength low–carbon low alloy steels</td>
<td>X. L. Wan</td>
<td>474</td>
</tr>
<tr>
<td>292</td>
<td>Nucleation driving force of intergranular ferrite during γ to α transformation</td>
<td>T. Saitoh</td>
<td>475</td>
</tr>
<tr>
<td>293</td>
<td>Origin of the elastic strain in pearlite structure</td>
<td>N. Koga</td>
<td>476</td>
</tr>
<tr>
<td>294</td>
<td>Dissolution behavior of grain boundary of eutectoid carbon steel and high carbon–chromium bearing steel in rapid heating</td>
<td>K. Yamamoto</td>
<td>24–1021</td>
</tr>
<tr>
<td>295</td>
<td>Carbon enrichment in austenite with ferrite and bainite transformation</td>
<td>N. Takayama</td>
<td>477</td>
</tr>
<tr>
<td>296</td>
<td>Effects of heating time on transformation during cooling of boron added steel sheets</td>
<td>K. Hikita</td>
<td>478</td>
</tr>
<tr>
<td>297</td>
<td>Variant selection of bainite and lath martensite in low carbon steel</td>
<td>N. Takayama</td>
<td>24–1010</td>
</tr>
<tr>
<td>298</td>
<td>EBSD analysis of orientation relationship and variant pairing in Fe–C martensite</td>
<td>G. Miyamoto</td>
<td>479</td>
</tr>
<tr>
<td>299</td>
<td>Variant selection of martensitic transformation under Ms temperature gradient</td>
<td>Y. Mishiro</td>
<td>480</td>
</tr>
<tr>
<td>300</td>
<td>Deformation–induced martensitic transformation behavior of retained austenite dispersed in martensitic stainless steel</td>
<td>Y. Matsuoka</td>
<td>24–326</td>
</tr>
<tr>
<td>301</td>
<td>(ISIJ Research Promotion Grant) Correlation between thermodynamic Ms temperature and elastic modulus in isotropic elastic medium</td>
<td>H. Terasaki</td>
<td>481</td>
</tr>
<tr>
<td>302</td>
<td>(ISIJ Research Promotion Grant) Pressure induced phase transformation in α–Mn steel by HPT–straining</td>
<td>Y. Todaki</td>
<td>482</td>
</tr>
<tr>
<td>303</td>
<td>(ISIJ Research Promotion Grant) Martensitic transformation of BCC phase in Fe–Mn–Al-based alloy and superelasticity</td>
<td>T. Otori</td>
<td>24–1016</td>
</tr>
<tr>
<td>304</td>
<td>Formation mechanism of the hierarchic structure in the lath martensite phase</td>
<td>Y. Murata</td>
<td>483</td>
</tr>
<tr>
<td>305</td>
<td>Phase–field simulation of lath martensite structure based on the TTSD model</td>
<td>F. Ozono</td>
<td>484</td>
</tr>
<tr>
<td>306</td>
<td>(Nishiyama Commemorative Prize) Titanium and its alloys using common elements as alloying ones</td>
<td>H. Fuji</td>
<td>485</td>
</tr>
<tr>
<td>307</td>
<td>(ISIJ Young Researcher Award) Development of titanium alloys with self-adjustable Young’s modulus for biomedical applications</td>
<td>M. Nakai</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>Reduction of titanium dioxide powder by molten magnesium and Mg–MgCl₂ flux</td>
<td>K. Ouchi</td>
<td>486</td>
</tr>
<tr>
<td>309</td>
<td>(Nishiyama Commemorative Prize) Development of IF ferritic stainless steels to save rare metals</td>
<td>A. Takahashi</td>
<td>487</td>
</tr>
<tr>
<td>310</td>
<td>Corrosion resistance and formability for the welded parts of 14Cr–0.1Sn ferritic stainless steel (Development of Sn added stainless steel)</td>
<td>T. Matsubashi</td>
<td>488</td>
</tr>
<tr>
<td>311</td>
<td>Effect of thermal expansion coefficient and Cu element on thermal fatigue property of ferritic stainless steels</td>
<td>K. Imakawa</td>
<td>489</td>
</tr>
<tr>
<td>312</td>
<td>Effect of Ti and Nb addition on recrystallization behavior in high purity ferritic stainless steel</td>
<td>K. Tashima</td>
<td>490</td>
</tr>
<tr>
<td>313</td>
<td>Effect of grain size on mechanical properties of nickel and manganese–free high nitorogen austenitic stainless steel</td>
<td>M. Miyoseta</td>
<td>491</td>
</tr>
<tr>
<td>314</td>
<td>Effect of carbon on mechanical properties of nickel and manganese free high nitrogen γ–stainless steels</td>
<td>I. Takasima</td>
<td>492</td>
</tr>
<tr>
<td>315</td>
<td>Development of non–magnetic and high yield point SUS304 steel by warm working</td>
<td>S. Torizuka</td>
<td>24–409</td>
</tr>
<tr>
<td>316</td>
<td>Machinability and corrosion resistance of bismuth–containing free–cutting martensitic stainless steel</td>
<td>M. Akashi</td>
<td>493</td>
</tr>
<tr>
<td>317</td>
<td>Precipitation of carbid and nitride during tempering in nitrogen 12%Cr martensitic stainless steel</td>
<td>Kinh Luan, Ngo–Huynh</td>
<td>494</td>
</tr>
<tr>
<td>318</td>
<td>Prediction of bending deformation behavior of strength–gradient steel sheets</td>
<td>K. Tsuboi</td>
<td>24–988</td>
</tr>
<tr>
<td>319</td>
<td>New simplified carburizing process available for stainless steels</td>
<td>Y. Morizono</td>
<td>495</td>
</tr>
<tr>
<td>320</td>
<td>(Mishima Medal) Iron Loss Reduction in Non–Oriented Electrical Steel Sheets</td>
<td>Y. Kurosaki</td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>Texture change during grain growth in non–oriented electrical steel</td>
<td>Y. Arita</td>
<td>496</td>
</tr>
<tr>
<td>322</td>
<td>Influence of magnetostriiction on hysteresis loss of electrical steel sheet</td>
<td>H. Tada</td>
<td>497</td>
</tr>
<tr>
<td>323</td>
<td>The effect of mechanical strain on the magnetic property of non–oriented electrical steel sheets</td>
<td>T. Wakisaka</td>
<td>498</td>
</tr>
<tr>
<td>324</td>
<td>Effect of insulation resistance on iron loss of laminated electrical steel sheets</td>
<td>K. Sashi</td>
<td>499</td>
</tr>
<tr>
<td>325</td>
<td>Thermal conductivity of lamination stacks of non–oriented electrical steel</td>
<td>S. Yamazaki</td>
<td>24–316</td>
</tr>
</tbody>
</table>
Lecture No. Plenary Session

Process Evaluation and Material Characterization

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>324</td>
<td>In-situ observation and analysis of (\text{M}_6\text{C}_4)-type precipitates and (\text{Cr})-depleted zones in SUS304 by TEM</td>
<td>K.Kaneko</td>
<td>512</td>
</tr>
<tr>
<td>325</td>
<td>3D elemental concentration mapping via K-edge subtraction imaging of steel</td>
<td>A.Takijiri</td>
<td>513</td>
</tr>
<tr>
<td>326</td>
<td>Structure analysis of (\text{Ca})-(\text{Fe})-(\text{O}) oxides by Rietveld method</td>
<td>T.Takayama</td>
<td>514</td>
</tr>
<tr>
<td>327</td>
<td>High temperature phase equilibrium of (\text{CaO})-(\text{Fe}_2\text{O}_3) system (Calculation of high-temperature phase diagram)</td>
<td>R.Murao</td>
<td>515</td>
</tr>
<tr>
<td>328</td>
<td>Development of skill-free chemical methods of analysis for iron and steel utilizing FI system</td>
<td>T.Yamane</td>
<td>516</td>
</tr>
<tr>
<td>329</td>
<td>Development of ultraviolet fluorescence spectroscopy after combustion for precise determination of trace sulfur in steel</td>
<td>S.Kinoshino</td>
<td>517</td>
</tr>
<tr>
<td>330</td>
<td>Limit of determination for minor alloyed elements in steels in radio-frequency glow discharge optical emission spectrometry associated with bias-current modulation</td>
<td>K.Wagatsuma</td>
<td>518</td>
</tr>
<tr>
<td>331</td>
<td>Secondary ion mass spectrometry for light elements in ferritic heat resistance steel</td>
<td>S.Suzuki</td>
<td>519</td>
</tr>
<tr>
<td>332</td>
<td>SEM-EDX analysis of slag using diluted ionic liquid</td>
<td>S.Imashuku</td>
<td>520</td>
</tr>
<tr>
<td>333</td>
<td>A new method for quantification of free magnesium oxide in slag by solid-state (^{25}\text{Mg}) NMR</td>
<td>K.Kanehashi</td>
<td>521</td>
</tr>
<tr>
<td>334</td>
<td>Analysis of (\text{CaO}) and MgO by continuous monitoring with FT-IR</td>
<td>M.Nishifoji</td>
<td>522</td>
</tr>
<tr>
<td>335</td>
<td>Development of rapid extraction methods of constituents of soils and slags using sub-critical water</td>
<td>N.Uehara</td>
<td>523</td>
</tr>
<tr>
<td>336</td>
<td>Development of a new system for monitoring of gas reactions and its application for model sinters</td>
<td>Y.Tobu</td>
<td>524</td>
</tr>
</tbody>
</table>

Title

- Process Evaluation and Material Characterization

Speaker

- C.Chen
- Y.Ishiguro
- M.Aratani
- Y.Ishiguro
- Y.Onuki
- K.Shinozuka
- T.Hirato
- K.Yuasa
- T.Kanai
- T.Obitsu
- T.Obitsu
- T.Aoyama
- M.Tomaru
- E.Tada
- E.Tada
- S.Otsuka
- K.Wagatsuma
- S.Suzuki
- S.Imashuku
- K.Kanehashi
- M.Nishifoji
- N.Uehara
- Y.Tobu

Page

- 500
- VOL. 24–1004
- VOL. 24–1005
- VOL. 24–1006
- VOL. 24–1007
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Plenary Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td></td>
<td>Tensile properties and microstructure of Ti-Al-Sn-Zr-Sc alloys</td>
<td>D.Ping</td>
<td>524</td>
</tr>
<tr>
<td>J2</td>
<td></td>
<td>Microstructure and oxidation behaviors of near-α Ti-Al-Zr-Mo-V-Sc alloys</td>
<td>W.Xiao</td>
<td>525</td>
</tr>
<tr>
<td>J3</td>
<td></td>
<td>Influence of simultaneous additions of Si and Ge on the microstructure and the compressive strength of a high temperature titanium alloy</td>
<td>T.Kitashima</td>
<td>526</td>
</tr>
<tr>
<td>J4</td>
<td></td>
<td>Mechanism of improving oxidation resistance in pure titanium by Nb addition</td>
<td>H.Takebe</td>
<td>527</td>
</tr>
<tr>
<td>J5</td>
<td></td>
<td>The effect of Nb on microstructure and oxidation resistance in α − Ti alloys</td>
<td>Y.Yamabe- Mitarai</td>
<td>528</td>
</tr>
<tr>
<td>J6</td>
<td></td>
<td>Numerical simulation of oxygen solubility during oxidation of titanium</td>
<td>T.Kitashima</td>
<td>529</td>
</tr>
<tr>
<td>J7</td>
<td></td>
<td>Decomposing behavior of α′−Ti−V alloy with fine dislocation−cell microstructure during aging process</td>
<td>H.Matsumoto</td>
<td>530</td>
</tr>
<tr>
<td>J8</td>
<td></td>
<td>Hot deformation behavior of Ti−5Al−2Fe−3Mo</td>
<td>Y.Tatsuzawa</td>
<td>531</td>
</tr>
<tr>
<td>J9</td>
<td></td>
<td>Microstructure and mechanical properties of Ti−xFe−yAl alloy</td>
<td>Y.Takemoto</td>
<td>532</td>
</tr>
<tr>
<td>J10</td>
<td></td>
<td>Unprecedented phenomenon of Ti−4Fe−7Al alloy</td>
<td>Y.Takemoto</td>
<td>533</td>
</tr>
<tr>
<td>J11</td>
<td></td>
<td>Precipitation behavior of isothermal ω phase in β titanium alloys</td>
<td>H.Ni</td>
<td>534</td>
</tr>
<tr>
<td>J12</td>
<td></td>
<td>Effect of microstructure on plastic−elastic deformation behavior of β type titanium alloys</td>
<td>Y.Mantani</td>
<td>535</td>
</tr>
<tr>
<td>J13</td>
<td></td>
<td>Isothermal aging behavior and Tensile properties of Ti−Cr−V−4Al alloys</td>
<td>M.Ikeda</td>
<td>536</td>
</tr>
<tr>
<td>J14</td>
<td></td>
<td>Microstructure and mechanical properties of friction stir welded β−type titanium alloys for biomedical application</td>
<td>K.Komine</td>
<td>537</td>
</tr>
<tr>
<td>J15</td>
<td></td>
<td>Hot deformation behavior and microstructural evolution of Ti−5Al−5Mo−5V−3Cr alloy</td>
<td>T.Akanuma</td>
<td>538</td>
</tr>
<tr>
<td>J16</td>
<td></td>
<td>Effect of cold working method on mechanical properties of ultrahigh strength Fe−Ni−Co−Ti alloys</td>
<td>T.Furuta</td>
<td>539</td>
</tr>
<tr>
<td>J17</td>
<td></td>
<td>Grain refinement of Gum Metal during cold working</td>
<td>S.Kuramoto</td>
<td>540</td>
</tr>
<tr>
<td>J18</td>
<td></td>
<td>Ultrahigh strength and high ductility in nano-twinned nano-grained Fe−Ni-Co−Ti alloys</td>
<td>K.Edalati</td>
<td>541</td>
</tr>
<tr>
<td>J19</td>
<td></td>
<td>Matthiessen’s plot in cold rolled pure Ti</td>
<td>M.Ueda</td>
<td>542</td>
</tr>
<tr>
<td>J20</td>
<td></td>
<td>Crystal grain refining and grain boundary controlling using three−point bending test in Ti−Ni shape memory alloy</td>
<td>M.Yasunaga</td>
<td>543</td>
</tr>
<tr>
<td>J21</td>
<td></td>
<td>Microstructure and mechanical properties of harmonic structure Ti−6Al−4V alloy compacts</td>
<td>T.Sekiguchi</td>
<td>544</td>
</tr>
<tr>
<td>J22</td>
<td></td>
<td>Anneal hardening mechanisms in SUS304 stainless steel processed by HPT</td>
<td>I.Shuro</td>
<td>545</td>
</tr>
<tr>
<td>J23</td>
<td></td>
<td>SUS329J1 duplex stainless steel with harmonic structure:Improvements in strength and ductility</td>
<td>O.Ciucu</td>
<td>546</td>
</tr>
<tr>
<td>J24</td>
<td></td>
<td>Creation of high speed steel/mild steel complex harmonic structured material by MM /SPS process</td>
<td>Y.Yamada</td>
<td>547</td>
</tr>
<tr>
<td>J25</td>
<td></td>
<td>Relationship between conditions of fine−particle bombarding treatment and surface microstructure of steel</td>
<td>T.Morita</td>
<td>548</td>
</tr>
<tr>
<td>J26</td>
<td></td>
<td>Microstructure and magnetic properties of pure iron after high−pressure torsion</td>
<td>A.Hosokawa</td>
<td>549</td>
</tr>
<tr>
<td>J27</td>
<td></td>
<td>Effects of strain rate and temperature on microstructure evolution in high purity aluminum during torsion deformation</td>
<td>S.Khamsuk</td>
<td>550</td>
</tr>
<tr>
<td>J28</td>
<td></td>
<td>Ultra grain refinement of thick metallic materials by accumulative channel−die compression bonding</td>
<td>N.Kamikawa</td>
<td>551</td>
</tr>
<tr>
<td>J29</td>
<td></td>
<td>Microwave heating behavior of high density compacts manufactured from insulated metallic powders</td>
<td>M.Taguchi</td>
<td>552</td>
</tr>
<tr>
<td>J30</td>
<td></td>
<td>Microwave absorption of carbonaceous material powders by separated microwave electric and magnetic fields</td>
<td>S.Suzuki</td>
<td>553</td>
</tr>
<tr>
<td>J31</td>
<td></td>
<td>Researches on fundamentals and application of microwave processing</td>
<td>N.Yoshikawa</td>
<td>554</td>
</tr>
<tr>
<td>J32</td>
<td></td>
<td>Production of bulky silicon by microwave heating</td>
<td>H.HoriKoshi</td>
<td>555</td>
</tr>
<tr>
<td>J33</td>
<td></td>
<td>Measurements of complex permittivity and permeability of various powders and liquids in microwave region</td>
<td>H.Fukushima</td>
<td>556</td>
</tr>
<tr>
<td>J34</td>
<td></td>
<td>Microwave heating on carbothermic reduction of hematite</td>
<td>K.Takeda</td>
<td>557</td>
</tr>
<tr>
<td>J35</td>
<td></td>
<td>Fundamentals and application of microwave ferro−magnetic resonance (FMR) heating</td>
<td>N.Yoshikawa</td>
<td>558</td>
</tr>
</tbody>
</table>