Discussion Sessions

Processing for Quality Products

Lecture Discussi	No. ion Session	Title	Speaker		F	Page
Advance	es in lubrication (technology of rolling				
13:05-13 D1 Ir	3:30 n situ observation of	lubricant on rolling interface	H. Utsunomiya			278
13:30-13 D2 (I	3:55 Invited Lecture) Effe oefficient of friction	ect of additives Mixed in lubricating oil on oil film formation and	T. Hirayama			280
13:55-14 D3 Ir	1:20 n situ observation of	extreme pressure agent in EHL oil films by a micro infrared spectroscopy	A. Miura	•		282
14:20-14 D4 E	1:45 stimation of surface	topology based on rolling pressure distribution	Y. Okada	•		283
15:00-15 D5 C	5:25 Consideration of emu	lsion lubrication described by μ-EHL and 3D-stribeck-curve	T. Fukuda	•	•••	285
15:25-15 D6 F	5:50 undamental study or	f lubrication characteristics of high strength steel in cold rolling	M. Shimura	•		286
15:50-16 D7 D	6:15 Development of cold	rolling oil for tinplate with high ESI	T. Ishii	•	••	290
16:15-16 D8 E	:40 ffect of applying lub	pricant in hot rolling	S. Watanabe	•		294
		Microstructure and Properties of Materials				
Heterog	eneous deformat	ion and fracture in high strength steels				
9:00-9:3 D9 E	60 Iffect of alloying elements	ments on the formation of white structure under rolling contact fatigue	M. Natori	•		296
9:30-10: D10 V ir	00 'isualization of strai: mage correlation me	n distribution during tensile deformation in a martensitic steel by using digital thod on replica films	N. Koga			299
10:00-10 D11 E tr	D:30 valuation of inhomoreated with interrupt	geneous deformation behavior by nano-scale DIC analysis in medium-Mn steel ted quenching and intercritical annealing	T. Masumura			301
10:45-11 D12 D b	:15 Deformation behavio y neutron diffraction	r of medium manganese steels at cryogenic temperature monitored n	T. Yamashita			302
11:15-11: D13 F	:45 ormation of deforma	ation-induced transformation texture in SUS 304 stainless steel	Y. Onuki	•		306
13:00-13 D14 A th	3:30 analysis of the interance molecular dynam	ction between dislocations and twin boundaries in FCC iron using ics	K. Kawatsu			308
13:30-14 D15 M	I:00 Iolecular dynamics olycrystalline mater	analysis of nucleation mechanism of martensite transformation in ials	T. Shimokawa			309
14:00-14 D16 H ei	1:30 ligh-temperature dig ffect in austenitic st	gital image correlation analysis of plastic deformation with Portevin-LeChatelier ainless steel	S. Lee			310
14:45-15 D17 (I tr	5:15 SIJ Research Promo ransformation in Fe-	otion Grant) Variant analysis on deformation-induced $\gamma \rightarrow \epsilon \rightarrow \alpha$ ' martensitic 5Mn-0.1C steel	T. Sawaguchi			312
15:15-15 D18 S	:45 trength and deforma	ation of ferritic steel with mixed dispersion of hard and soft phases	T. Tsuchiyama			314

Process Evaluation and Material Characterization

On-line analysis for iron and steel making processes

1 3:35- D19	14:05 Rapid determination of minor elements in low alloy steel by laser induced breakdown spectroscopy and deep neural network	S. Kashiwakura	 317
14:05- D20	14:35 A review on on-line measuring technique in steelmaking processes	Y. Uchida	 319
14:35- D21	15:05 Application of laser induced breakdown spectroscopy to iron and steel making processes	Y. Deguchi	 320

High Temperature Processes

Lectur Plenar	e No. y Session Title	Speaker		F	Dage
Solidi	fication and structure control				
1	Measurement of change in the lattice constant of Fe-C alloy before and after δ - γ transformation	Y. Nanri	•	•••	322
2	Effects of Ti on coarsening of gamma grains produced by a massive-like transformation in carbon steels	S. Tsuji	•	•••	323
3	Effect of residual δ phase on γ phase coarsening after a massive-like δ/γ transformation in Fe-18Cr-11Ni alloy	T. Narumi			324
4	Quantitative evaluation of dendrites in 304 stainless steel by using time-resolved tomography	M. Nonomura			325
5	Time-resolved and in-situ observation of α - γ transformation in TiAl alloys	T. Nishimura	•	•••	326
Conti	nuous casting and solidification				
6	Compositional and morphological changes of Mn-Si-Al deoxidation products during solidification of steel	J. Gamutan	•	•••	327
7	Influential factors on solidification cracking susceptibility of stainless steels with F-mode solidification	K. Kadoi	•	•••	328
8	Effect of Ti addition and thermal history on hot ductility of Nb containing steel	S. Takaya	•	•••	329
9	Efforts to improve durability by controlling thermal expansion of tundish safety lining	Y. Tsutsui	•	•••	330
Reduc	tion and carburization				
10	Effect of reduction characteristic of fine iron ore by pulverized coal on atmospheric gas	K. Yamamoto	•	•••	331
11	Formation mechanism of fine fibrous metallic iron by hydrogen reduction of iron oxide	N. Toyoshima	•	•••	332
12	The analysis of hematite(Fe ₂ O ₃)-reduction with nitride	N. Ishikawa		•••	333
13	Investigation of pre-reduced iron ore production for blast furnace development of adiabatic counter current moving bed for shaft furnace reaction simulator -2	M. Mizutani			334
14	Carburization and melting behavior of reduced iron in carbon-iron ore composite using un-carbonated biomass	R. Higashi	•	•••	335
Lower	· part of blast furnaces				
15	DEM-CFD simulation on clogging behavior of narrow path in blast furnace	D. Tsukada	•		336
16	Effect of reduction degree of sinter iron ore on slag penetration behavior against graphite balls packed laver	R. Tani			337
17	Analysis of deformation behavior of packed bed in blast furnace cohesive zone by the Bingham fluid model	M. Tanaka			338
18	(ISIJ Research Promotion Grant) Fast dynamic model of sintered ore softening deformation	S. Natsui	•	•••	339
Iron o	re and sinter				
19	Effects of some factors on gangue removal from iron ore by alkali hydrothermal treatment	Y. Mochizuki			340
20	Effect of multiple and slit burner on decreasing combustion energy in view of combustion efficiency development of REMO-tec (RE-ignition method for optimization of total energy consumption) - 4	M. Matsumura			341
21	Phase relation between quaternary calcium ferrite and liquid on the CaO-SiO ₂ -Fe ₂ O ₃ -5mass% Al ₂ O ₃ system at 1240°C in air	Y. Uchisawa			342
Young	gengineer session of ironmaking				
22	Relation between high temperature reducibility and pore factors	S. Yamada			343
23	Development of steam heating granulation technology for increasing sinter productivity	S. Fujiwara	•		344
24	Effect of applying "Lump Ore MEBIOS" on sinter productivity in Oita No.1 sintering machine	T. Sugiura	•		345
25	Improvement of coke layer shape by increasing rotating speed of bell-less chute	Y. Ogasawara	•		346
Young	engineer session of coke-making 1				
26	Investigation of melting behavior of low-fluidity coal by synchrotron X-ray imaging	S. Arakawa			347
27	Development of a new evaluation apparatus for coking pressure	K. Ishimoto			348
28	Development of ceramic welding lance in combustion chamber	D. Watanabe		•••	349
Young	engineer session of coke-making ?				
29	Improving management systems of coal blending for reducing quality variation of coke	R. Kubo			350
30	Development of diagnostic technology of coke oven profile and application for repairing	Y. Arimura			351
31	Wear resistance of materials of frictional parts in an equipment for a coal reforming process	Y. Shimobe			352

Coal a	and coke			
32	Improvement of combustion function by adjusting combustion gas supply time	T. Tani	• • •	353
33	Development of coal shrinkage measuring equipment with simulating pressuring conditions during carbonization process	S. Matsuo		354
34	Effect of char structure and gasification agent on gasification behavior of pulverized coal char	T. Negishi	• • •	355
Front	ier of high temperature physical chemistry in oxide/metal interface 1			
35	Measurement of time-resolved synchrotron X-ray total scattering pattern for a calcium ferrite melt	S. Sukenaga	• • •	356
36	Measurement of diffusion coefficient of O ²⁻ ion in molten SiO ₂ -Na ₂ O-NaF system	O. Takeda		357
37	Evaluation of thermal resistance of Si-rich layer in oxide scale formed on heavy steel plate	R. Endo		358
38	Mass transport of the Zr-O-(Fe, Cr, Ni) system during the SUS316-Zircaloy4 reaction at high temperatures under the severe accident condition of light water reactor	A. Itoh		359
Front	ier of high temperature physical chemistry in oxide/metal interface 2			
39	Wettability of Al ₂ O ₃ , MgO, or MgAl ₂ O ₄ substrate against molten Fe-18%Cr-9%Ni alloy	N. Saito	• • •	360
40	Viscosity evaluation of Fe _x O-CaO-SiO ₂ foaming slag generated by interfacial reaction	N. Saito	• • •	361
41	In-situ observation method of foaming behavior of molten slag	M. Nakamoto		362
Intro	luction of research topics in novel processing forum			
42	Hydrogen production by reaction between liquid zinc and water vapor	C. Kasahara	• • •	363
43	Recovery Nd from Nd-Fe-B magnets using Bi and Al melts	S. Niwa		364
44	Effect of operating conditions on reaction enhancement by ultrasonic irradiation	T. Inagaki		365
Electi	omagnetic processing of materials			
45	Some specific phenomena observed in microwave processing for metal production and recycling	N. Yoshikawa	• • •	366
46	Imposition of electromagnetic field on an alloy during solidification for reduction of shrinkage cavity	Y. Nishi	• • •	367
47	Velocity suppression effect comparison between uniform and gradient magnetic fields on flowing tin in packed bed composed of high electrical conductivity solid	G. Kusunoki		368

Sustainable Systems

Lecture No. Plenary Session Title	Speaker	Р	age
Effective application of the steelmaking slag and dust 1			
48 Decomposition of zinc ferrite by roasting with ammonium chloride	H. Kubo		369
49 Purification of the P-enriched phase derived from dephosphorization slag by roasting with ammonium chloride	H. Kubo	• • •	370
Effective application of the steelmaking slag and dust 2			
50 Preparation of the high phosphate slag fertilizer (Report of the workshop on the effective application of phosphate in the steelmaking slag 1)	T. Harada		371
51 Survey of crops and qualification to utilize phosphate in the high phosphate slag for plant cultivation (Report of the workshop on the effective application of phosphate in the steelmaking slag 2)	J. Wasaki		372
52 Properties and effectiveness of the high phosphate slag fertilizer (Report of the workshop on the effective application of phosphate in the steelmaking slag No. 3)	M. Tani		373
53 Field study of wheat cultivation using the high phosphate slag	R. Kinoshita		374

Instrumentation, Control and System Engineering

Lectur Plena	re No. ry Session Title	Speaker	Pa		'age	
Instru	Instrumentation					
54	Development of the shape meter for skin pass mill in continuous pickling line	Y. Isei	•••	•	375	
55	(ISIJ Research Promotion Grant) Imaging of magnetic characteristics using rectangular wave eddy current testing	T. Sasayama			376	
56	The high sensitivity inspection technique for round billet using synthetic aperture focusing technique	K. Terada	•••	•	377	
Proce	ss monitoring					
57	Remote crane monitoring using area sensing technology	I. Ishii	•••	•	378	
58	Analysis of small displacement and deflection angle of overhead traveling crane using sampling moire method	M. Fujigaki		•	379	
59	Vibration monitoring for unloader crane using high-speed vision	K. Shimasaki	• •	•	380	
60	Application of sphere frame drone to inspection of plant equipment	K. Ishiyama	• •	•	381	
Syster	n and control					
61	Anomaly detection system for hot strip mills (Search technique for similar cases of troubles occurred in the past)	Y. Harada		•	382	
62	Development of the proper stock model for the raw materials	H. Kobayashi	•••	•	383	
63	Development of a cooperative system with operators to support the determination of slabs charging order into heating furnaces in a steel plate factory	D. Inoue		•	384	

Processing for Quality Products

Lectur Plena	re No. ry Session	Title	Speaker		F	age
Young	g engineer sessio	n of plate				
64	Expanded applica	tion of DBT rolling method, for improving the accuracy of rectang	ular geometry T. Kawahara	•	••	385
65	Improvement in a cold plate	ccuracy of target estimation for width of hot plate utilizing measur	ed width of K. Inoue			386
66	Improvement of i	dentification reliability for off-line plates by bar code verification	S. Miyake	•	•••	387
Relial	bility evaluation	of weld 3-1				
67	Numerical simula	tion of arc phenomena during arc spot welding with constricted no	zzle H. Komen			388
68	Application of as	mmetric Abel inversion to spectroscopic measurement of tilted TI	G arc plasma Y. Yamashita	•	•••	389
69	Simulation of nug by three-dimensi	get formation process during steel/Al-alloy dissimilar resistance sponal particle method and thickness estimation of intermetallic comp	pounds S. Chikuchi			390
70	Influence of exter and bead shape	nal magnetic field in helium gas tungsten arc welding on molten m	etal flow S. Matsuda		•••	391
71	Microstructural e	volution during wire arc additive manufacturing of martensitic stai	inless steel Y. Sato	•	•••	392
Relial	bility evaluation	of weld 3-2				
72	Microstructure an	d corrosion resistance of buried arc welds of stainless steels	K. Kadoi	•	••	393
73	An identification	of steel-weld microstructures by deep learning method and its inter	pretability K. Tsutsui	•	••	394
74	Crystal plasticity test of welds	simulation on the microscopic effect of loading history in fracture	toughness Y. Mikami			395
75	Inhomogeneity and duplex stainless s	d formation mechanism of microstructure in stir zone of friction st teel	tir welded T. Yamashita			396
76	Effect of grain re	inement on P segregation at grain boundary during friction stir we	lding T. Kawakubo	•	•••	397
Mode	ling of various p	henomena in metal forming and its application				
77	Ductile fracture p	rediction in biaxial sheet stretching using the ellipsoidal void mode	el K. Komori		•••	398
78	Mechanism of su	face defect generation caused by inclusions in slabs in hot rolling	N. Yukawa		•••	399
79	Prediction on dia fracture model	gonal cracks in outer rim of flange-shaped parts using an anisotropi	ic ductile K. Hayakawa			400

Evalu	ation technology for mechanical properties of sintered materials			
80	Persistent homology analysis for stomatal arrangement in porous materials-validation based on model arrangement	Y. Ozaki		401
81	Qualification of remained pore configuration in Ti6Al4V-MIM materials visualized by X-ray CT	Y. Ozaki	• • •	402
82	Prediction and verification of solid solution strengthening effect of pure titanium sintered material with light elements	K. Kondoh		403
Contr	ol technologies for free cutting -14			
83	(ISIJ Research Promotion Grant) Effect of finished surface properties after machining on nitriding process -First report-	M. Hagino		404
84	Effect of C content in workpiece material on tool wear in hard turning	Y. Amano		405
85	Influence of heat treatment on the machinability and finished surface residual stress of S55C steel	A. Takemura	• • •	406
86	Robust estimation for tool wear in turning processes for stainless steel	Y. Uchiyama	• • •	407
Recer	at tube forming young researcher's session IV			
87	Effect of eccentricity on press bendability of eccentric pipe	K. Nakajima	• • •	408
88	(ISIJ Research Promotion Grant) Effect of mandrel in semi-dieless drawing process for manufacturing variable thickness steel tubes	T. Kishimoto		409
89	Measurement and analysis of elasto-plastic deformation behavior of cold rolled mild steel sheet subjected to non-linear stress paths (2nd report)	Y. Takada		410
Surfa	ce and cooling			
90	(ISIJ Research Promotion Grant) Extension of treatable area by nitriding with atmospheric-pressure plasma jet	R. Ichiki		411
91	Boiling heat transfer characteristics of three upward circular water jets impinging on a moving hot sheet	T. Hikata		412

Microstructure and Properties of Materials

Lectur Plena	e No. ry Session Title	Speaker		Р	aqe
Electi	ical steel, titanium and its alloys	·			0
92	Evaluation of IPM motor using Si gradient steel	S. Yoshizaki	• •	•	413
93	Effect of effective length on final grain radius of grain growth simulation based on the local curvature multi-vertex model	S. Morimoto			414
94	Influence of chemical compositions on the thermal conductivity of α + β type titanium alloys	Y. Nakamura	• •	•	415
Heat	resistant steels				
95	Creep strength and sensitization resistance of low C 18Cr-11Ni-3Cu-Mo, Nb, B, N steel	N. Otaki	• •	•	416
96	Stability of Fe ₂ Nb Laves and Ni ₃ Nb phases in Zr containing novel austenitic heat resistant steels	S. Oh	• •	•	417
97	Creep strengthening of novel austenitic Laves steels by Ta replacement	Y. Mitsuya	• •	•	418
98	3D observation of the precipitation behavior of KA-SUS304J1HTB at 973 K	T. Hatakeyama	• •		419
Ni ba	sed alloys				
99	Change in dislocation density with tensile deformation of a additively manufactured Hastelloy X Ni base superalloy using In situ synchrotron diffraction in Spring-8	S. Torizuka			420
100	Microstructural characteristics and room and high temperature tensile properties of 3D printed Inconel 718 alloy	M. Obana			421
101	Evaluation of the stability of γ "-Ni3Ta (D022) phase at elevated temperatures	T. Tsuya	• •	•	422
102	Computational study on phase equilibria among γ /TCP/ <i>oP</i> 6 phases in Ni-Cr-Mo ternary system at elevated temperatures	R. Nagashima	• •	•	423
Stren	gth and deformation behavior 1				
103	Effect of nitrogen on work-hardening behavior at low temperature in stable austenitic steel	R. Nakagawa	• •	•	424
104	Formation of inhomogeneous microstructure in martensitic steel during cooling and its effect on yield strength -2	S. Yoshioka			425
105	Effect of cooling rate on carbon partitioning during quenching and partitioning process	T. Asakawa	• •	•	426
106	Effect of volume fraction, stability, and morphology of austenite of ultrafine ferrite + austenite structure on development of high strength and ductility of 1600MPa-30%	R. Iizuka	• •	•	427

107: Free, tor-deal rolling on inhomogeneous deformation behavior and microstructure of FeNix-AL-C alloys Y. Kavano v. 28 108: Free, tor-Alloy compositions on microstructure during sensile deformation of FeNix-AL-C alloys Y. Mori v. 429 109: SEM-DIC analysis of slip deformation behavior base on simple shear K. Yasuda v. 431 Hydrogen embrittlement 1 M. Kawamori v. 431 111: Fexamination of high-gene embrittlement behavior of ultrafine grain structured SUS1810. steels Y. Ishii v. 433 113: Hydrogen embrittlement performes on structure austinic dual phase steels Y. Shihayama v. 435 113: Hydrogen embrittlement properties on materiastic-austinic dual phase steels Y. Shihayama v. 435 Hydrogen embrittlement 2 The effects of the residual stress and plastic strain on the hydrogen embrittlement cracking in a stratch-formed tempered Materiastic steel sheet R. Moriya v. 436 116: Erflect of frazes-in vaancies on hydrogen-related integranular fracture of pure ron R. Sata v. 7 436 116: Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered K. Kakuchi v. 7 438 116: Comparison of hydrogen embrittlement susceptibility toilowed by cyclic prestress of tempered K. Kakuchi v. 7 439 Hydrogen embrittlement susceptibilit	Stren	gth and deformation behavior 2			
198 Effect of alloy compositions on microstructure during tensils deformation of Fe-Ni-Al-C alloys Y. Mori · · · · · · · · · · · · · · · · · · ·	107	Effect of cold rolling on inhomogeneous deformation behavior and microstructure of Fe-Ni-Al-C alloys	Y. Kawano		428
109 SEM-DIC analysis of alip deformation behavior based on simple shear K. Yasuda · · · · 430 110 Formation of kink-like local deformation band in compressed pearline steels K. Sugiyama · · · · 431 Hydregen embrittlement 1 K. Sugiyama · · · · 432 111 Evaluation of hydrogen entry into steel under atmospheric corrosive environment M. Kawamori · · · · 433 131 Hydrogen embrittlement properties of mattensize-austenic dual-phase steels Y. Shihayama · · · · 434 137 Endpringen embrittlement properties of mattensize-austenic dual-phase steels Y. Shihayama · · · · 436 136 Comparison of activation energy for hydrogen desorption of tempered mattensitic steel including proper period to the residual stress and platic straits in on the hydrogen embrittlement fracture of pure iron R. Moriya · · · · 436 136 Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered mattensitic steels with stress concentration N. Uemura · · · · 438 137 Crack inhibition analyses in hydrogen-related intergranular fracture of pure iron N. Lemura · · · · 439 149 Comparison of hydrogen embrittlement susceptibility toilowed by cyclic prestress of tempered <td>108</td> <td>Effect of alloy compositions on microstructure during tensile deformation of Fe-Ni-Al-C alloys</td> <td>Y. Mori</td> <td></td> <td>429</td>	108	Effect of alloy compositions on microstructure during tensile deformation of Fe-Ni-Al-C alloys	Y. Mori		429
110 Formation of kink-like local deformation hand in compressed pearlitic steels K. Sugiyama v. v. 431 Hydrogen embrittlement 1 K. Sugiyama v. v. 432 111 Examination of hydrogen entry into steel under atmospheric corrosive environment M. Kawamori v. v. 432 113 Hydrogen embrittlement preprises of markensite state inter dual-phase steels Y. Shihayama v. v. 433 113 Hydrogen embrittlement preprises of markensite steel sheet H. Nishimura v. v. 435 Hydrogen embrittlement preprises of markensite steel sheet H. Nishimura v. v. 436 Hydrogen embrittlement Quartensitie steel sheet R. Moriya v. v. 436 Hydrogen embrittlement Shortgen embrittlement fracture of pure inon R. Moriya v. v. 438 116 Effect of Trozen-in vacancices on hydrogen desorption of lempered martensitic steels with different stress concentration N. Uemura v. v. 438 118 Comparison of bydrogen embrittlement fracture of pure inon R. Sato v. v. 430 119 Evaluation of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered K. Kikuchi v. v. 430 119 Evaluation of hydrogen concentration behavior under cyclic loading with an overload K. Okada v. v. 441	109	SEM-DIC analysis of slip deformation behavior based on simple shear	K. Yasuda		430
Hydrogen entry into steel under atmospheric corrosive environment M. Kawamori > 432 111 Evaluation of hydrogen embritilement bahavior of ultrafine grain structured SUS3161. steels Y. Ishia > 433 114 The effects of the residual stress and plastic strain on the hydrogen embritilement properties of mattensite-sustenite dual-phase steels Y. Ishiayama > 434 115 Comparison of activation emergy for hydrogen desorption of lempered martensitic steel including procephrated vanadium-molydeleum cardides R. Moriya 435 116 Effect of force-in vacancies on hydrogen-cellated integranular fracture of pure iron R. Sato 436 117 Cack initiation analyses in hydrogen embritilement fracture of tempered martensitic steels with stress concentration N. Uemura 438 118 Comparison of budrogen embritilement susceptibility using bend test and crack propagation analysis of hydrogen embritilement susceptibility using bend test and crack propagation analysis of hydrogen entration admites of hydrogen related quasi-cleavage fracture in BCC steels K. Okada 441 120 Hydrogen trapping sites in tempered martensitic staels with various tempering temperatures A. Nozaki 442 1219 Evaluation of bydrogen thydrogen encentration admitexite and crack propagation an	110	Formation of kink-like local deformation band in compressed pearlitic steels	K. Sugiyama	• • •	431
111 Fixalization of hydrogen entry into steel under atmospheric corrosive environment M. Kawamori • • • 432 12 Examination of hydrogen enbrittlement behavior of ultrafine grain structured SUS3161.steels Y. Ishii • • • 433 13 Hydrogen embrittlement properties of martensite steel tice dual-phase steels Y. Shibayama • • • 434 14 The effects of the residual stress and plastic strain on the hydrogen embrittlement cracking in a stretch-formed tempered Martensitic steel sheet H. Nishimura • • • • 435 Hydrogen embrittlement properties of martensitic steel including precipitated vanadium-molybelenin carbids R. Moriya • • • • 436 116 Effect of foxe-in vacancics on hydrogen-related integranular fracture of pare iron R. Sato • • • • 438 118 Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered martensitic steels with different stress relaxation properties K. Kikuchi • • • • 440 119 Evaluation of hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet K. Nozaki • • • • 441 119 Evaluations of hydrogen concentration behavior under cyclic loading with an overload T. Omi • • • • 442 119 Evaluations of hydrogen encentration and microdayles stainless steel H. Nishimura • • • •	Hydro	ogen embrittlement 1			
112 Examination of hydrogen embrittlement helavior of ultrafine grain structured SUS316L steels Y. Ishii · · · · 433 113 Hydrogen embrittlement properties of martensite-austenite dual-phase steels Y. Shibayama · · · · 434 113 Hydrogen embrittlement properties of martensite-austenite dual-phase steels Y. Shibayama · · · · 435 113 Examination of hydrogen embrittlement properties of martensite steel sheet II. Nishimura · · · · 435 114 Effect of froze-in-vacancies on hydrogen-celated integranular fracture of pure iron R. Moriya · · · 438 115 Comparison of advicagen embrittlement fracture of tempered martensitie steels with antiferon struces releaxation properties N. Uemura · · · 438 116 Effect of froze-in vacancies on hydrogen-celated integranular fracture of pure iron R. Moriya · · · 438 118 Comparison of hydrogen embrittlement struces releaxation properties K. Kikuchi · · · 439 119 Evaluation of hydrogen combrittlement susceptibility using bend test and crack propagation analysis of hydrogen concentration behavior under cycle loading with an overload I. Ohmi · · · 440 120 Hydrogen trapping gites in tempered martensitic adaustenitic single-phase steel II. Nishimura · · · 444 121 Numericaning be	111	Evaluation of hydrogen entry into steel under atmospheric corrosive environment	M. Kawamori	• • •	432
113 Hydrogen embrittlement properties of martensite-austenite dual-phase steels Y. Shibayama · · · · 434 114 The effects of the residual stress and plastic strain on the hydrogen embrittlement cracking in a stretch-formed tempered Martensitic steel sheet H. Nishimura · · · · 435 Hydrogen embrittlement 2 III Comparison of activation energy for hydrogen desorption of tempered martensitic steel including precipitated vanadum-molydocum carbidos R. Moriya · · · · 436 116 Effect of frozen-in vacancies on hydrogen-celated integranular fracture of pure iron R. Sato · · · · 438 118 Comparison of hydrogen embrittlement fracture of tempered martensitic steels with stress concentration N. Uemura · · · · 439 Hydrogen embrittlement susceptibility followed by cyclic prestress of tempered martensitic steels with different stress relaxation properties K. Kikuchi · · · · 440 120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki · · · · 442 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · · 444 122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels S. Yamaaski · · · · · 444 123 Relationship of between shear deformation-induced martensitic stainless steel <td>112</td> <td>Examination of hydrogen embrittlement behavior of ultrafine grain structured SUS316L steels by hollow high pressure hydrogen thin wall tensile test</td> <td>Y. Ishii</td> <td></td> <td>433</td>	112	Examination of hydrogen embrittlement behavior of ultrafine grain structured SUS316L steels by hollow high pressure hydrogen thin wall tensile test	Y. Ishii		433
114 The effects of the residual stress and plastic strain on the hydrogen embritulement cracking in stretch-formed tempered Martensitic steel sheet H. Nishimura · · · · 435 Hydrogen cubritulement 2 III Comparison of activation energy for hydrogen desorption of tempered martensitic steel including precipitated vanadium-molybdemun carbides R. Moriya · · · · 436 III Feffect of force-in-vacancias on hydrogen-related intergranular fracture of pure iron R. Sato R. Sato · · · · 438 III Corack initiation analyses in hydrogen embritulement fracture of tempered martensitic steels with stress concentration N. Uemura · · · · 439 Hydrogen embritulement 3 K. Kikuchi · · · 430 Hydrogen embritulement susceptibility oflowed by cyclic prestress of tempered martensitic steels with stress concentration N. Uemura · · · 440 121 Forduation of hydrogen embritulement susceptibility using hend test and crack propagation analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · 441 122 Numerical analysis of hydrogen concentration ehavior under cyclic loading with an overload S. Nacaaki · · · 442 123 Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura · · · 444 124 Age-h	113	Hydrogen embrittlement properties of martensite-austenite dual-phase steels	Y. Shibayama		434
Hydrogen embrittlement 2 I15 Comparison of activation energy for hydrogen desorption of tempered martensitic steel including precipitated vanadium-molybdenum carbides R. Moriya · · · · 436 116 Effect of frozen-in vacancies on hydrogen embrittlement fracture of pure iron R. Sato · · · · 437 117 Crack initiation analyses in hydrogen embrittlement fracture of tempered martensitic steels with stress concentration N. Uenura · · · · 438 118 Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered martensitic steels with different stress relaxation properties K. Kikuchi · · · · 439 119 Evaluation of hydrogen embrittlement susceptibility using bend test and crack propagation analysis of hydrogen rementation sheavior under cyclic loading with an overload T. Ohmi · · · · 441 120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki · · · · 442 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · · 443 122 Origin of scrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada · · · · · 444 123 Relationship of between shear deformation and microduplex structure of d	114	The effects of the residual stress and plastic strain on the hydrogen embrittlement cracking in a stretch-formed tempered Martensitic steel sheet	H. Nishimura		435
113 Comparison of activation energy for hydrogen desorption of tempered martensitic steel including precipitated vanadium-molydefamum carbides R. Moriya • • • • 436 116 Effect of fozen-in vacancies on hydrogen enbrittlement fracture of umpered martensitic steels with stress concentration N. Uemura • • • • 438 117 Cacks initiation analyses in hydrogen embrittlement susceptibility followed by cyclic prestress of tempered martensitic steels with different stress relaxation properties N. Uemura • • • • 438 Hydrogen embrittlement 3 Itempered martensitic steels with various tempering temperatures K. Kikuchi • • • • 430 120 Hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet K. Tagawa • • • • 440 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohni • • • 442 122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada • • • • 444 1213 Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura • • • • 444 122 Gigin or oxidation behavior in Al-containing ferritic stainless steel Y. Yuima • • • 445 125 Silding wear properties and nanostructure in stainless steels	Hvdro	ogen embrittlement 2			
116 Effect of frozen-in vacancies on hydrogen-related intergranular fracture of pure iron R. Sato 437 117 Crack initiation analyses in hydrogen embrittlement fracture of tempered martensitic steels with stress concentration N. Uemura 438 118 Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered martensitic steels with different stress relaxation properties K. Kikuchi 439 Hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet K. Tagawa 441 120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki 442 121 Numerical analysis of hydrogen encentration behavior under cyclic bading with an overload T. Ohmi 442 122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada 443 123 Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura 444 124 Age-hardening behavior of deformation induced martensitic stailess steel Y. Fujimura 446 125 Stliding wear properties and nanostructure in stainless steel Y. Fujimura 446 125 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stai	115	Comparison of activation energy for hydrogen desorption of tempered martensitic steel including precipitated vanadium-molybdenum carbides	R. Moriya		436
117 Crack initiation analyses in hydrogen embrittlement fracture of tempered martensitic steels with stress concentration N. Uemura · · · 438 118 Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered martensitic steels with different stress relaxation properties K. Kikuchi · · · 439 Hydrogen embrittlement 3 III Fixaluation of hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet K. Tagawa · · · 440 120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki · · · 441 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · · 443 122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada · · · · 444 123 Relationship of between shear deformation and microduplex structure of duplex stainless steel II. Nishimura · · · · 444 122 Stilding wear properties and nanostructure in stainless steels T. Yoshizawa · · · · 444 124 Age-hardening behavior of deformation-induced martensitic stainless steel Y. Fujimura · · · · 444 125 Stiding wear properties and nanostructure in stainless steels T. Yoshizawa · ·	116	Effect of frozen-in vacancies on hydrogen-related intergranular fracture of pure iron	R. Sato		437
118 Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered markensitic steels with different stress relaxation properties K. Kikuchi · · · 439 Hydrogen embrittlement 3 119 Evaluation of hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet K. Tagawa · · · 440 120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki · · · 442 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · 444 123 Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura · · · 444 123 Relationship of between shear deformation-induced martensitic and austenitic single-phase steel S. Yamasaki · · · 444 123 Relationship of between shear deformation in Al-containing ferritic stainless steel Y. Fujimura · · · 444 124 Age-hardening behavior of Al-containing ferritic stainless steel Y. Fujimura · · · 444 125 Stilding wear properties and nanostructure in stainless teels Y. Fujimura · · · 447 125 Staindess of microstructure M. Suggeoi · · · 449 126 <td>117</td> <td>Crack initiation analyses in hydrogen embrittlement fracture of tempered martensitic steels with stress concentration</td> <td>N. Uemura</td> <td></td> <td>438</td>	117	Crack initiation analyses in hydrogen embrittlement fracture of tempered martensitic steels with stress concentration	N. Uemura		438
Hydrogen embrittlement 3 119 Evaluation of hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet K. Tagawa · · · · 440 120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki · · · · 441 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · 443 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · 444 122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada · · · 444 123 Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura · · · 445 124 Age-hardening behavior of deformation-induced martensitic and austenitic single-phase steel S. Yamasaki · · · 446 125 Sliding waar properties and anostructure in stainless steels T. Yoshizawa · · · 447 126 Effect of Na adtirin and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi · · · 448 Quantitative analysis of microstructure Mercodimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi	118	Comparison of hydrogen embrittlement susceptibility followed by cyclic prestress of tempered martensitic steels with different stress relaxation properties	K. Kikuchi		439
119 Evaluation of hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet K. Tagawa • • • 440 120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki • • • 442 120 Origin of serrated markings on hydrogen-concentration behavior under cyclic loading with an overload T. Ohni • • • 443 120 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada • • • 444 122 Origin of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura • • • 444 123 Relationship of between shear deformation induced martensitic and austenitic single-phase steel H. Nishimura • • • 444 124 Age-hardening behavior of deformation induced martensitic stailess steel T. Yoshizawa • • • 444 125 Skiding wear properties and nanostructure in stainless steels T. Yoshizawa • • • 444 126 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stainless steel M. Sugeoi • • • 444 127 Effect of NI addition and bright annealing on high temperature sulfidation corrosion behavior of M. Sugeoi • • • 448 Quantitative analysis of cecentite spheroidization in pearlitic steels	Hvdro	ogen embrittlement 3			
120 Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures A. Nozaki · · · 441 121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohmi · · · 442 122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada · · · 443 Stainless steel II. Nishimura · · · 444 124 Age-hardening behavior of deformation-induced martensitic and austenitic single-phase steel wires added-N S. Yamasaki · · · 444 125 Sliding wear properties and nanostructure in stainless steels T. Yoshizawa · · · 444 126 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stainless steel Y. Fujimura · · · 444 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi · · · 444 128 Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi · · · 445 128 Davesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino · · · 452 123 Development of microstructure recognition algorithm using machine learning for martensite/bainite two-pha	119	Evaluation of hydrogen embrittlement susceptibility using bend test and crack propagation analysis of high strength steel sheet	K. Tagawa		440
121 Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload T. Ohni · · · 442 122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada · · · 443 Stainless steel Image: Steel of the steel of t	120	Hydrogen trapping sites in tempered martensitic steels with various tempering temperatures	A. Nozaki		441
122 Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels K. Okada · · · 443 Stainless steel IIII Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura · · · 444 124 Age-hardening behavior of deformation-induced martensitic and austenitic single-phase steel wires added-N S. Yamasaki · · · 444 124 Age-hardening behavior of deformation and microduplex structure of duplex stainless steel H. Nishimura · · · 444 125 Sliding wear properties and nanostructure in stainless steels T. Yoshizawa · · · 444 126 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stainless steel Y. Fujimura · · · 444 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi · · · 444 128 Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi · · · 449 129 Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki · · · 445 130 Reconstruction of microstructure image by persistent-homology-based inverse analysis K. Kiyomura · · · 452 132 Development of microstructure	121	Numerical analysis of hydrogen concentration behavior under cyclic loading with an overload	T. Ohmi		442
12 Origin Continue manage with pargen related pairs that equivation in Secondary In Contait In Contait 123 Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura · · · 444 124 Age-hardening behavior of deformation-induced martensitic and austenitic single-phase steel S. Yamasaki · · · 444 125 Sliding wear properties and nanostructure in stainless steels T. Yoshizawa · · · 444 126 Effect of N b and Ti on oxidation behavior in Al-containing ferritic stainless steel Y. Fujimura · · · 444 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi · · · 444 128 Three-dimensional analysis of feerystallized ferrite grains in low-carbon steel K. Horiuchi · · · 449 129 Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki · · · 451 130 Reconstruction of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructure R. Takada · · · 452 133 Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learning M. Muramatsu · · · 453 133 Recognit	122	Origin of serrated markings on hydrogen-related quasi-cleavage fracture in BCC steels	K Okada		443
123 Relationship of between shear deformation and microduplex structure of duplex stainless steel H. Nishimura · · · 444 124 Age-hardening behavior of deformation-induced martensitic and austenitic single-phase steel S. Yamasaki · · · 444 125 Sliding wear properties and nanostructure in stainless steels T. Yoshizawa · · · 444 126 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stainless steel Y. Fujimura · · · 444 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi · · · 444 128 Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi · · · 449 129 Quantitative analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi · · · 449 129 Quantitative analysis of recrystallized ferrite grains in low-carbon steel K. Kiyomura · · · 451 130 Reconstructure image by persistent-homology-based inverse analysis K. Kiyomura · · · 452 131 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino · · · 452 1332 Recognition of initiation site and fracture unit in brittle fracture surface of	Stain		11. 011000		1.0
124 Age-hardening bet octreen shear detormation-induced martensitic and austenitic single-phase steel 11 Namman 12 124 Age-hardening behavior of deformation-induced martensitic and austenitic single-phase steel S. Yamasaki 12 125 Sliding wear properties and nanostructure in stainless steels T. Yoshizawa 12 126 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stainless steel Y. Fujimura 14 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi 14 128 Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi 14 129 Quantitative analysis of comentite spheroidization in pearlitic steels by persistent homology M. Suzuki 14 130 Reconstruction of microstructure image by persistent-homology-based inverse analysis K. Kiyomura 14 131 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino 14 132 Development of microstructure recognition algorithm using machine learning or martensite/bainite two-phase microstructure R. Takada 14 453 133 Recognition of initiation site and f	123	Relationship of between shear deformation and microdunley structure of dunley stainless steel	H Nishimura		444
Writes addred-N S. Talindskii 1 - 1 - 443 125 Sliding wear properties and nanostructure in stainless steels T. Yoshizawa - 446 126 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stainless steel Y. Fujimura - 447 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi - 447 128 Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi - 450 129 Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki 451 130 Reconstruction of microstructure image by persistent-homology-based inverse analysis K. Kiyomura 452 131 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino 452 132 Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructure R. Takada 453 133 Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learning M. Muramatsu 454 134 Grain boundary segregation of Mn during austentitization treatment in medium Mn martensitic	123	Age-hardening behavior of deformation-induced martensitic and austenitic single-phase steel wires added N	C. Vomocolci		445
125 Stidling wear properties and nanostructure in stainless steels 1. YoshiZawa *** 440 126 Effect of Nb and Ti on oxidation behavior in Al-containing ferritic stainless steel Y. Fujimura *** 447 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi *** 448 Quantitative analysis of microstructure 128 Three-dimensional analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki *** 449 129 Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki *** 450 130 Reconstruction of microstructure image by persistent-homology-based inverse analysis K. Kiyomura *** 451 Machine learning 131 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino *** 453 132 Development of microstructure recognition algorithm using machine learning machine learning M. Muramatsu *** 454 133 Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learning M. Muramatsu **	125	Sliding successful and an estimation in stainlass stack	5. Tamasaki		445
126 Effect of No and 11 on extention behavior in Al-containing ferritic stainless steel Y. Fujimura · · · 44/ 127 Effect of Al addition and bright annealing on high temperature sulfidation corrosion behavior of ferritic stainless steel M. Sugeoi · · · 448 Quantitative analysis of microstructure Image: Steel Ste	125	Sinding wear properties and nanostructure in stainless steels	1. Yoshizawa		440
127 Enterior Ar addition and origin annealing on high temperature sumdation corrosion behavior of ferritic stainless steel M. Sugeoi · · · 448 Quantitative analysis of microstructure 128 Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi · · · 449 129 Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki · · · 449 129 Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki · · · 450 130 Reconstruction of microstructure image by persistent-homology-based inverse analysis K. Kiyomura · · · 451 Machine learning 131 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino · · · 452 132 Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructure R. Takada · · · 453 133 Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learning M. Muramatsu · · · 454 Partitioning of elements 134 Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steel T. Maeda · · · 455 136 <td>126</td> <td>Effect of Nb and 11 on oxidation behavior in Al-containing ferritic stainless steel</td> <td>Y. Fujimura</td> <td>• • •</td> <td>44/</td>	126	Effect of Nb and 11 on oxidation behavior in Al-containing ferritic stainless steel	Y. Fujimura	• • •	44/
Quantitative analysis of microstructure 128 Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel K. Horiuchi · · · 449 129 Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology M. Suzuki · · · 450 130 Reconstruction of microstructure image by persistent-homology-based inverse analysis K. Kiyomura · · · 451 Machine learning Image: State of the stat	127	ferritic stainless steel	M. Sugeoi		448
128Three-dimensional analysis of recrystallized ferrite grains in low-carbon steelK. Horiuchi· · · 449129Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homologyM. Suzuki· · · 450130Reconstruction of microstructure image by persistent-homology-based inverse analysisK. Kiyomura· · · 451Machine learning131Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steelY. Mino· · · 452132Development of microstructure recognition algorithm using machine learning martensite/bainite two-phase microstructureR. Takada· · · 453133Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learningM. Muramatsu· · · 454Partitioning of elements134Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steelT. Maeda· · · 455135Carbon enrichment of austenite during ferrite - bainite transformation in Fe-0.1C-0.5Si-2.0Mn steelS. Tanaka· · · 456136Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in 	Quan	titative analysis of microstructure			
129Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homologyM. Suzuki· · ·450130Reconstruction of microstructure image by persistent-homology-based inverse analysisK. Kiyomura· · ·451Machine learning131Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steelY. Mino· · ·452132Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructureR. Takada· · ·453133Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learningM. Muramatsu· · ·454Partitioning of elements134Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steelT. Maeda· · ·456136Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperatureR. Ogawa· · ·457137Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steelA. Ikeda· · ·458	128	Three-dimensional analysis of recrystallized ferrite grains in low-carbon steel	K. Horiuchi	• • •	449
130 Reconstruction of microstructure image by persistent-homology-based inverse analysis K. Kiyomura · · · 451 Machine learning 131 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino · · · 452 132 Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructure R. Takada · · · 453 133 Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learning M. Muramatsu · · · 454 Partitioning of elements I. Maeda · · · 455 134 Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steel S. Tanaka · · · 456 136 Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperature R. Ogawa · · · 457 137 Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steel A. Ikeda · · · 458	129	Quantitative analysis of cementite spheroidization in pearlitic steels by persistent homology	M. Suzuki	• • •	450
Machine learning 131 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Y. Mino · · · 452 132 Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructure R. Takada · · · 453 133 Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learning M. Muramatsu · · · 454 Partitioning of elements I. Maeda · · · 455 455 134 Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steel T. Maeda · · · 455 136 Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperature R. Ogawa · · · 457 137 Effect of S i and Cr addition on temper softening resistance of 0.3%C martensitic steel A. Ikeda · · · 458	130	Reconstruction of microstructure image by persistent-homology-based inverse analysis	K. Kiyomura	• • •	451
 Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructure R. Takada R. Takada K. Takada<!--</td--><td>Mach</td><td>ine learning</td><td></td><td></td><td></td>	Mach	ine learning			
132Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructureR. Takada· · · 453133Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learningM. Muramatsu· · · 454Partitioning of elements134Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steelT. Maeda· · · 455135Carbon enrichment of austenite during ferrite - bainite transformation in Fe-0.1C-0.5Si-2.0Mn steelS. Tanaka· · · 456136Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperatureR. Ogawa· · · 457137Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steelA. Ikeda· · · 458	131	Bayesian optimization of parameters in cellular automaton simulation for ferrite phase transformation in carbon steel	Y. Mino		452
133Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learningM. Muramatsu· · · 454Partitioning of elements134Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steelT. Maeda· · · 455135Carbon enrichment of austenite during ferrite - bainite transformation in Fe-0.1C-0.5Si-2.0Mn steelS. Tanaka· · · 456136Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperatureR. Ogawa· · · 457137Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steelA. Ikeda· · · 458	132	Development of microstructure recognition algorithm using machine learning for martensite/bainite two-phase microstructure	R. Takada		453
Partitioning of elements 134 Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steel T. Maeda • • • 455 135 Carbon enrichment of austenite during ferrite - bainite transformation in Fe-0.1C-0.5Si-2.0Mn steel S. Tanaka • • • 456 136 Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperature R. Ogawa • • • 457 137 Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steel A. Ikeda • • • 458	133	Recognition of initiation site and fracture unit in brittle fracture surface of steel using machine learning	M. Muramatsu		454
134 Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steel T. Maeda • • • 455 135 Carbon enrichment of austenite during ferrite - bainite transformation in Fe-0.1C-0.5Si-2.0Mn steel S. Tanaka • • • 456 136 Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperature R. Ogawa • • • 457 137 Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steel A. Ikeda • • • 458	Partit	ioning of elements			
 135 Carbon enrichment of austenite during ferrite - bainite transformation in Fe-0.1C-0.5Si-2.0Mn steel 136 Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperature 137 Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steel A. Ikeda 458 	134	Grain boundary segregation of Mn during austenitization treatment in medium Mn martensitic steel	T. Maeda		455
 136 Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperature 137 Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steel A. Ikeda 458 	135	Carbon enrichment of austenite during ferrite - bainite transformation in Fe-0.1C-0.5Si-2.0Mn steel	S. Tanaka		456
137 Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steelA. Ikeda• • • 458	136	Effect of carbon partitioning and carbide precipitation behavior on mechanical properties in metastable austenitic stainless steel with changes in partitioning temperature	R. Ogawa		457
	137	Effect of Si and Cr addition on temper softening resistance of 0.3%C martensitic steel	A. Ikeda		458

Precip	pitation			
138	Coexistence of orientation relationships between ferrite and cementite in pearlite	S. Endo	• • •	459
139	Analysis of strengthening by Ti-N clusters and nano-sized TiN precipitate	G. Miyamoto	• • •	460
140	(ISIJ Research Promotion Grant) High magnetic field effects on Cu-precipitation of Fe-1wt.%Cu	Y. Mitsui	• • •	461
141	(ISIJ Research Promotion Grant) Crystal plasticity analysis of three dimensional GN dislocation distribution density in dispersion hardening steel	Y. Okuyama	•••	462
Surfa	ce technology			
142	(ISIJ Research Promotion Grant) Experimental determination of phase equilibria in the Al-Fe-Si ternary system	R. Kainuma		463
143	Change in the three-phase eutectic microstructure of hot-dip Zn-Al-Mg alloy coating by heat treatments	T. Fukata		464
144	Properties of liquid zinc embrittlement in pre-strained 490MPa class steels	M. Yamamoto	• • •	465
145	Water model experiment to clarify unplating caused by bubble generation in continuous galvanizing	M. Nakamoto	• • •	466
146	Corrosion resistance of rust layers on friction stir welded high phosphorus carbon steel	K. Hatsuda	• • •	467
147	(ISIJ Research Promotion Grant) Plasma characterization of low vacuum region of microwave-sheath voltage combination plasma	I. Tanaka	•••	468
Mach	ine structural steel			
148	Influence of fine particle peening on surface hardening microstructure of nitrided-quenched pure iron	S. Watanabe	• • •	469
149	Effect of Cr amount on tempering softening resistance vehavior in carbonitriding material	Y. Hayashi	• • •	470
150	Spheroidized-carbide formation process below A_1 temperature in high-chromium steels for case-hardening	K. Matsuo		471
151	Effect of quenching before spheroidizing annealing on ductile fracture limit of annealed steel	H. Narumiya	• • •	472

Process Evaluation and Material Characterization

Lectur	e No.	Speaker		P	ana
Гіспаі		Opeaner		10	ige
Surfac	ce analysis and crystal structure analysis				
152	Soft X-ray emission spectroscopy of carbon element in steel materials	Y. Tanaka	• •	••	473
153	Crystal structure analysis of Fe-C martensitic steels by ab-initio EBSD indexing	T. Tanaka	• •	••	474
Non-d	estructive / on-site analysis for materials related to steel industry 1				
154	Analysis of Oxide growth mechanism by in-situ hydrogen measurement using a gas sensor	M. Fukumoto	• •	••	475
155	Free lime content in steelmaking slag determined by cathodoluminescence imaging	S. Imashuku	•	••	476
156	Characterization of aluminum oxide films formed on the surface of Fe-Ca-Al alloys	S. Suzuki	• •	••	477
Non-d	estructive / on-site analysis for materials related to steel industry 2				
157	Pressure measurement beneath Oxide scale during high temperature oxidation of steel	Y. Kondo	•	••	478
158	Characterization of properties of Fe-based alloy melts	S. Suzuki	•	••	479
159	Precision of X-ray fluorescence quantification for non-destructive/on-site analysis and replacement of proportional counter by silicon drift detector	J. Kawai	•		480
160	Terahertz non-destructive evaluation	T. Tanabe	•	••	481

ISIJ and JIM Joint Sessions

Lectur Joint S	e No. Session Title	Speaker			Page
Titan	ium and its alloys 1				
J1	In-situ analysis of TiAl alloy using X-ray fluorescence analysis	T. Nishimura	•	•••	482
J2	Effect of transition metals on the mechanical properties and shape memory effect of the biocompatible Ti–Au–based alloys	W. Chiu			483
J3	Anomalous grain size effect on the mechanical properties of Gum Metal	T. Hashino		•••	484
J4	Effect of alpha/beta orientation relationship on the deformation behavior in alpha+beta Ti-6Al-4V alloy	E. Chandiran		•••	485
J5	Ultrafine-grain refinement makes Ti-O alloy ductile at 77 K	Y. Chong	•	•••	486
Titan	ium and its alloys 2				
J6	Anormal phenomena of electrical resistivity in meta-stable beta type titanium alloys	M. Ikeda		•••	487
J7	Precipitation behavior in two-step aging for Ti-Cu alloy	H. Akamine		•••	488
J8	Strain rate dependence on room temperature deformation in pure titanium	M. Deguchi	•	•••	489
J9	Inhomogeneous distribution of plastic strain in pure titanium	Z. Song		•••	490
J10	Numerical analysis of non-uniform deformation mechanisms in CP-Ti	Y. Kawano		•••	491
J11	Analysis of CRSS ratio and plastic-slip trace of a polycrystalline Ti-6Al-2Sn-4Zr-2Mo-Si alloy with				
	controlling the grain size	H. Matsumoto	•	•••	492
Ultra	fine grained materials -fundamental aspects for ultrafine grained structures-				
J12	Wear and impact properties of harmonic structured composite with WC-Co alloy and high speed steel	H. Fujiwara	•	•••	493
J13	Microstructure formation and deformation behavior of Co-29Cr-6Mo alloy compacts	M. Kawabata	•	•••	494
J14	Plastic deformation propagation behavior in grain size gradient regions based on atomistic and dislocation studies	K. Kiyota			495
Mater	ials science of martensitic and bainitic transformations and its applications 1				
J15	Effect of thermomechanical treatment on recrystallization and quenched structure of medium Mn steel	K. Matsuda			496
J16	Changes in solute carbon concentration and toughness during low-temperature tempering in martensitic carbon steel containing retained austenite.	S. Uranaka			497
J17	Effect of reduction rate / pass in controlled rolling on the properties and texture of bainite structure	N. Takavama			498
J18	Relationship between heterogeneous carbon distribution in bainite and austenite microstructure and				
	thermal stability of austenite	M. Watanabe	•	•••	499
Mater	ials science of martensitic and bainitic transformations and its applications 2				
J19	Anisotropy of cleavage fracture caused by transformation internal stress in martensitic steels	D. Fukui	•	•••	500
J20	TRIP effect via $\gamma \rightarrow \varepsilon \rightarrow \alpha'$ transformation and reverse $\varepsilon \rightarrow \gamma$ transformation in Fe-15Mn-10Cr-8Ni-4Si steel	T. Sawaguchi			501
J21	Fatigue crack growth associated with microstructural evolution under cyclic loading in				
122	nano-twinned SUS304 steel	Y. Mine	•	•••	502
JZZ	SD-EBSD analysis for increase uctural langue crack propagation in faith mattensite of carbon steer	S. UEKI	•	•••	303
Mater	ials science of martensitic and bainitic transformations and its applications 3				
J23	Effect of dislocation density on strength and ductility in low carbon -2% Si - 5%Mn fresh martensitic steel	A. Ito	•	•••	504
J24	Development of 1800MPa-13% by the formation of ultrafine equiaxed martensitic structure in low carbon 7Mn steel	R. Oya			505
J25	Effect of Al content on functional fatigue in Fe-Mn-Al-Ni superelastic alloys	T. Hoshi	•	•••	506
J26	Temperature dependence of critical stress in Cr added Fe-Mn-Al-Ni based superelastic alloys	J. Xia	•	•••	507
Mater	ials science of martensitic and bainitic transformations and its applications 4				
J27	Dislocation microstructure analysis of deformation-induced martensite in metastable austenitic steel	Y. Kaya	•	•••	508
J28	Change of phase transformation temperature by shot-peening for Fe-33%Ni and				500
TAC	Fe-28%N1-20%C0 alloys	H. Sato	•	•••	509
J29	Phase-field analysis of change in dislocation density during martensitic transformation in steel	K. Yamazakı	•	•••	510

Mate	ials science of martensitic and bainitic transformations and its applications 5			
J30	Microstructure and martensitic transformation behavior of Ti-Pd-Hf alloys	K. Kiwaki		511
J31	Morphology and crystallography of self-accommodation of martensite in Ti-Ni-Hf alloys	N. Maeda		512
J32	Variant pairing of lenticular martensite at $\Sigma 3$ boundaries	Y. Shinohara		513
J33	Effect of B2 precipitates on martensite transformation behavior in Fe-Ni-Al alloys	T. Moritani	•••	514
Mater	ials science of martensitic and bainitic transformations and its applications 6			
J34	Effect of cooling rate on microstructures in Fe-Ni martensite	S. Morito	• • •	515
J35	Three-dimensional observation of the microstructure of upper bainite nucleated from grain boundaries in medium carbon steel	S. Jimbo		516
J36	Relationship between lattice parameters and crystallographic characteristics of stress-induced martensite in Ti-base shape memory alloy	M. Tahara		517
J37	Cryogenic shape memory effect in Cu-Al-Mn alloys	S. Sato	•••	518
Mate	ials science of martensitic and bainitic transformations and its applications 7			
J38	Reentrant martensitic transformation and phase equilibria in Co-Cr-Ga-Si alloys	R. Murakami	• • •	519
J39	Displacive phase transformation in Mn-Zn-based alloys	X. Xu	• • •	520
J40	Tempering-induced martensite in Ti-10Mo-7Al alloy	Y. Takemoto		521
J41	Resistance to temper softening in low carbon martensitic steels by microalloying of V, Nb and Ti	Y. Zhang	•••	522
Mater	ials science of martensitic and bainitic transformations and its applications 8			
J42	Effect of Co concentration on hysteresis for martensitic transformation in (Ni-Co) ₅₀ -Mn-Sn metamagnetic shape memory alloys	T. Miyakawa		523
J43	Metamagnetic transition in Pd ₂ MnGa-based alloys	T. Ito	• • •	524
J44	Microstructural evolution of martensitic steel sheet containing auto-tempered martensite	Y. Wada		525
J45	Excess solute carbon and retained tetragonality after the tempering of 0.6%C martensitic steels	N. Maruyama	•••	526