Discussion Sessions

High Temperature Processes

	ure No. ussion Session Title		Speaker			Pa	age
Lates	st research aiming at Lumpy zone control fo	r next generation hydrogen enriched blast fur	nace				
(Final	al report meeting of the study group on "Lu	npy zone control for next generation hydrogen	n enriched blas	: fu	rn:	ace	")
D1	Reduction disintegration mechanism of pellet und	ler high hydrogen condition of blast furnace	K. Momma	•	•	•	1
D2	2 Degradation behaviors during steam gasification	of coke	Y. Ueki	•	•	•	3
D3	3 Two-phase flow analysis on powder motion in voi	d space of packed bed of blast furnace stack	H. Nogami	•	•	•	5
D4	4 Plastic deformation of self fluxed palettes		M. Tanaka	•	•	•	7
D5	5 Pellet softening and deformation behavior analyz	ed by ADEM	S. Ishihara	•	•	•	9
D6	6 Effect of fractional reduction on melt formation b	ehavior at high temperatures	H. Konishi	•	•	•	11
D7	7 Evaluation of crystal precipitation and metallization	n of slag sections of sinter ore in reducing conditions	T. Watanabe	•	•	•	13
D8	8 Softening and melting behaviors of mixed burder and lump ores under H ₂ reduction	s consisting of sintered ores, pellets,	S. Ueda		•	•	15
D9	9 Effect of reduced mineral structure on softening of high temperature loading condition	leformation of pre-reduced pellets under	K. Ohno			•	17
D10	0 Viscoelasticity evaluation of suspensions with hig	sh solid fraction	N. Saito	•	•	•	19
D11	1 Packed bed deformation analysis by dynamic mo- considering reduction degree	del of sintered iron ore plastic deformation	S. Natsui		•	•	21
	Proce	essing for Quality Products					
Recen	nt topics related to the manufacture of high	tensile steel					
D12	2 An online rolling model for plate mill considering	g Nb precipitation effect	T. Otsuka	•	•	•	23
D13	3 Effects on remaining oxide of joining conditions	in sheet bar joining by induction heating	T. Okazaki	•	•	•	27
D14	4 Controlled rolling to manufacture high-strength r	nanganese steels	J. Yanagimoto	•	•	•	29
D15	5 Development of on-line forward slip ratio models	on the tandem cold strip mill	Y. Fujii	•	•	•	33
D16	6 The trend of a flattening facility for high strength	material	R. Kumagai	•	•	•	37
	Process Evalu	ation and Material Characterization					
State-	e-of-the-arts in chemical analyses of steel and	l iron					
D17	7 Chemical verification of a spectrophotometric me	thod for determination of silicon in steel samples	H. Mizuguchi	•	•	•	41
D18	8 Development of a simple colorimeter using a whi identify an endpoint and digitize color changes of		Y. Suzuki		•	•	42
D19	9 (ISIJ Research Promotion Grant) The effect of co contacting with frozen aqueous solutions elucidar		A. Inagawa			•	44
D20	Precipitation of cobalt at 1-nitroso-2-naphtol grav	imetry for wet-analysis of steel	N. Uehara	•	•	•	45
D21	Precipitation of barium sulfonate for gravimetric	analysis of sulfur in steel	N. Uehara	•	•	•	46
D22	2 Quantitative recovery of tungsten to improve the p	recision of gravimetric method for tungsten in steel	T. Kanamaru	•	•	•	47

International Organized Sessions

2024/3/14 Room 14

2024/3/14 Room 14			
Lecture No. Title Speaker		Page	
Recent advances in analytical techniques for metallic cultural heritage studies			
-Mainly focusing on the use of synchrotron radiation, neutron, and muon-			
10:30-10:35			
Opening address: M. Tanaka [Tokyo Univ. of the Arts]			
Chair: K. Nagata [Tokyo Tech.]			
10:35-10:55			
Int1 Principles and progress of muonic X-ray analysis			
Osaka Univ. 🔿 A. Sato	•••	48	
10:55-11:15			
Int2 Non-destructive depth-profiling elemental analysis for a bulk sample including chemical state information using muon beam			
Osaka Univ. OK. Ninomiya		50	
11:15-11:45			
Int3 (Invited Lecture) Material history and the study of historic bronze sculptures and the contribution of research at the laboratory and large scale facilities			
Rijksmuseum OR. van Langh		51	
Chair: J. Kawai [Kyoto Univ.]			
14:00-14:20			
Int4 History and advances of chemical analysis techniques used for cultural properties			
Nippon Steel Technology OH. Watanabe · M. Suehiro · A. Sakoda · M. Matsumoto · T. Nishi	•••	52	
14:20-14:40			
Int5 Microstructures and corrosion properties of japan-specific nails "Wakugi" used in wooden buildings in the early modern period			
Nippon Steel Technology OM. Suehiro · H. Watanabe · A. Sakoda · M. Matsumoto · T. Nishi	•••	56	
14:40-15:00 Int6 Engineering science and art on the origin of high quality iron (so-called Tamahagane) from pre-modern in JAPAN			
Kobelco Research Inst. 🛛 Y. Matsui · M. Inui · S. Oishi · C. Hiraga · T. Wakabayashi · K. Kono	• • •	60	
Chair: Y. Matsui [KOBELCO Research Institute]			
15:10-15:30			
Int7 Why does <i>tamahagane</i> exhibit beautiful colours? -Electron microscopes unveil the microstructure-			
JFE Techno-Research OK. Sato · K. Shibuya	•••	61	
15:30-15:50			
Int8 Milli-Watt XRF (X-Ray fluorescence) spectrometer for cultural heritage			
Kyoto Univ. OJ. Kawai, Tohoku Univ. S. Imashuku	• • •	65	
Chair: K. Ninomiya [Osaka Univ.]			
16:00-16:20			
Int9 Current status of high-energy X-ray micro-imaging at SPring-8		<i>CC</i>	
Japan Synchrotron Radiation Research Institute OM. Hoshino · K. Uesugi	•••	66	
16:20-16:40 Int10 Non-destructive analysis of ancient cast metals using synchrotron X-ray radiography and computed tomography			
Tokyo Univ. of the Arts OM. Tanaka, Japan Synchrotron Radiation Research Institute M. Hoshino,			
Gifu Prefectural Government Y. Mizutani, Fukuyama Museum of Art K. Harada 16:40-17:10	•••	69	
Int11 (Invited Lecture) Smart*light: Bringing the synchrotron to the museum			
Delft Univ. of Tech. OM. Alfeld · J. Dik		70	
17:10-17:15			
Concluding remarks: R. van Langh [Rijksmuseum]			
17:15-17:20 Closing address: K. Sato [JFE Tecno-Research Corporation]			

High Temperature Processes

	High Temperature Processes			
Lectur Plena	re No. ry Session Title	Speaker	F	Page
Coke				
1	(Nishiyama Commemorative Prize) Development of ironmaking raw material production technology	T. Yamamoto		71
n	suitable for reducing CO_2 emissions Mechanism and countermeasure for adhesion of fero-coke materials	S. Hiroike		71
		M. Watanabe		72
3	Determination of porous microstructure of metallurgical coke using X-ray CT	M. watanabe	• • •	13
Young	g engineer session of coke-making 1			
4	Method of obstacles removal for the combustion chamber of coke ovens	Y. Makino	• • •	74
5	Improvement of preventing pushing trouble coke-cake in deterioration coke ovens	T. Seito	• • •	75
6	Investigation of cause and countermeasure of the gate valve failure in TC outlet COG pipeline	H. Okada	• • •	76
7	Result report of overhaul the benzene collecting towers for COG purify plant	K. Kubota	• • •	77
Young	g engineer session of coke-making 2			
	Reduction of joint pushing work in coke oven brickwork	I. Terakawa		78
	Effect of iron ore on softening/melting and reducibility of Ferro-Coke	K. Horita		79
	Evaluation of non-or-slightly-caking coal and effect on coke strength	S. Arakawa		80
	Improvement of briquette strength in briquette production	N. Yamaguchi		81
	eatment of raw materials	o		
	Developing continuous dephosphorization technique for iron ore with reduction gasification	O. Ishiyama	• • •	82
	Rheology of wet ore powder and its granulation characteristics	H. Nakamura	• • •	83
14	Technology to prevent pellets bursting with using organic binder	Y. Kajiyama	• • •	84
Sinter	•			
15	(ISIJ Young Researcher Award) Study for improving the productivity and the quality on sintering process	K. Takehara		
16	Effect of coke and Al ₂ O ₃ content on sinter cake structures and yield	S. Fujiwara		85
17	Characterization of SFCA-III in iron ore sinter by EBSD method	R. Murao		86
18	Analysis of pore network in sintered ore by X-ray CT method and its relation with reduction behavior	T. Takayama		87
Non-r	netallic inclusion			
19	(Distinguished Article Award) A kinetic model to predict the compositions of metal, slag and			
1)	inclusions during ladle refining	A. Harada		88
20	(Nishiyama Commemorative Prize) Development of inclusion control for stainless steel	Y. Ehara		89
21	(Nishiyama Commemorative Prize) Effect of oxide inclusion composition on TiN precipitation behavior	H. Ota		90
22	(Nishiyama Commemorative Prize) Research on the control and utilization of nonmetallic inclusions			
	in steel	H. Hasegawa	•••	91
23	Effects of composition and heat treatment on CaS formation in ferritic stainless steel	S. Kaneko	•••	92
Curre	ent status and challenges in measurement and interpretation of thermophysical propertie	s for molten oxi	des	
	Compositional dependence of phonon mean free path in oxide glasses	S. Sukenaga		93
25	Dominant factor for thermal conductivity in silicate melts: a molecular dynamics study	M. Shimizu		94
	Measurement conditions for thermal conductivity of oxide melts using transient hot-wire method -A study using finite element method-	Y. Kogo		95
27	(ISIJ Research Promotion Grant) Thermal conductivity of CaO-CaF ₂ -SiO ₂ melts	T. Nishi		96
	nodynamics	T C		07
	Measurements and reevaluation of thermochemical data for tri-calcium phosphate	K. Saito	• • •	97
29	Liquid-Liquid phase separation in CaO-FeO-P ₂ O ₅ ternary slag	Y. Uchida	• • •	98
30	Thermodynamic properties of VO _{1.5} in CaO-Al ₂ O ₃ -VO _{1.5} -SiO ₂ slag at 1873 K	D. Park	•••	99
31	Fe-18mass%Cr alloy	H. Ono		100
32	(ISIJ Research Promotion Grant) Precipitation behavior of AlN inclusions in Fe-(0.5-2.0)mass%Al-2.0mass%Mn alloy under continuous unidirectional solidification process	K. Imai		101

Trans	port phenomena			
33	Prediction model of nitrogen concentration behavior by N2 gas stirring	S. Takeda	•••	102
34	Terminal settling velocity of particle in suspension	S. Shimasaki		103
35	(ISIJ Research Promotion Grant) Evaluation of behavior of bubble ascending in gallium alloy under a horizontal magnetic field using an ultrasonic tomography	H. Murakawa	•••	104
Quan	tification of solidification phenomena IV 1			
36	Effect of ultrasonic wave imposition starting time on eutectic ratio variance of solidifying eutectic alloy	K. Fujita		105
37	Peritectic solidification of Ag-Sn alloys by uni-directional solidification experiment	H. Harada		106
38	Crystallographic analysis of the austenite grains after a massive-like transformation in carbon steel using 4D-CT+XRD	M. Osaki		107
39	Crystal orientation analysis of bcc-hcp coexisting dendrites in solidifying TiAl-based alloys	Y. Imoto		108
40	Time-resolved X-ray diffraction measurement of austenite coarsening after a massive-like transformation in Fe-0.45C steel	Y. Wang		109
Ouan	tification of solidification phenomena IV 2			
	Phase-field model for CALPHAD coupling: Closed-form expression for the interface composition satisfying local equilibrium	T. Morino		110
42	Estimation of grain rearrangement behaviour during semi-solid shear deformation by multi-phase-filed lattice Boltzmann simulation	N. Yamanaka		111
43	Quantitative phase-field simulation of banded structure during rapid solidification	M. Ohno	•••	112
44	Macrosegregation of Sn alloys formed by solidification shrinkage and columnar dendrites bridging	Y. Natsume	•••	113
45	Numerical analysis of the effect of solidification shrinkage flow on dendrite growth	K. Ueno	•••	114
Slag				
-	Suppression of pulverization of CaO-SiO ₂ -Al ₂ O ₃ slag and its mechanism	S. Tashiro		115
47	Effect of MgO on phase structure and evolution of steelmaking slag during cooling	W. Gu		116
48	Recovering phosphorus and reducing steelmaking slag by leaching P-concentrated slag	T. Iwama		117
49		J. Deng		118
Dla at	furnace			
	(Nishiyama Commemorative Prize) Technology development of low carbon blast furnace operation with low coke rate and life extension	K. Nakano		119
51	Effect of coke degradation with gasification reaction on gas permeability	T. Iwanaga	• • •	119
	Estimation model of tap hole diameter in blast furnace	J. Kim		120
		J. KIIII		121
	naking process in future			
53	(Sawamura Award) Development of low carbon blast furnace operation technology by using experimental blast furnace	K. Nakano		122
54	Numerical simulations and experimental insights into hydrogen-rich blast furnace	Y. Chiu		122
	Technology for accelerating pulverized coal combustion in oxygen blast furnace tuyere	Y. Morita		123
	Evaluation for carbidization rate of porous iron whisker with CO gas	R. Higashi		124
	Development of fluidized bed H_2 -based ironmaking process using low-grade fine ores -Investigation of sticking tendency of low-grade fine ores-	Y. Nakahara		126
Floot	ia ana furma aa			
	ric arc furnace Numerical simulation model of melting of solid phase in electric arc furnace	K. Kihara		127
	Effect of MgO content in EAF slag on Cr yield	F. Kirihara	• • •	127
	canceled	r. Kirmara		120
Refra	-			
	(Sawamura Award) Effects of particle size distribution of MgO and carbon on MgO-C reaction behaviour	Y. Hino		130
62	Improvement of durability of converter charging sidewall by application of high-fracture energy MgO-C bricks	Y. Yamashita		131
63	Interfacial reactions between Al_2O_3 -based refractories and molten steels with different Mn concentrations	Y. Kawakami		132

Fund	amentals of solidification and continuous casting			
64	(ISIJ Young Researcher Award) Empirical study on deformation behavior in semisolid alloy	T. Narumi		
65	(Tawara Award) Transient boiling heat transfer characteristics of a moving hot surface during			
	two-fluid flat spray quenching	H. Niitani	•••	133
	Effect of operating conditions on gas entrainment into molten steel flow	Y. Takemasa	•••	134
67	Efficient and accurate data assimilation system for columnar dendrite growth	T. Takaki	• • •	135
	Sustainable Systems			
	re No. rv Session Title	Chaokar	r	2000
		Speaker		Page
	nced thermal energy utilization technologies for saving energy and reducing carbon emission Coke oven gas (COG) augmentation by reacting CO_2 and unused hot carbon in coking chamber :		ig indust	•
60	1^{st} demonstration of CO ₂ utilization in ironmaking industries	H. Park	• • •	136
	Thermal storage performance of $Ca_2AIMnO_{5+\delta}$ as chemical heat storage material	K. Tanahashi	• • •	137
/0	Effect of aluminizing time for thickness of compound layer on the iron-based heat storage alloy	D. Maruoka	• • •	138
	nced thermal energy utilization technologies for saving energy and reducing carbon emission		ıg indust	ry 2
	Thermal and high-temperature compressive properties of Al-Cu-Si alloy-based latent heat storage pellet	Y. Shimizu	• • •	139
	Catalytic and thermal control performance of Ni/(Al-Si) MEPCM catalyst on NH_3 decomposition	C. Tamzysi	• • •	140
73	Evaluation of heat storage and release performance in a bench scale packed bed latent heat storage system with 600°C scale medium to high-temperature latent heat storage pellets	T. Nakamura		141
Recyc	cle			
74	Silicon as a carbon free reductant: elemental phosphorus production from phosphoric acid	A. Okamoto		142
75	(ISIJ Research Promotion Grant) Reforming effect of silicate type surface penetrants on mortar mixed with blast furnace slag	T. Kondo		143
76	Rapid sorting and classification of automotive steel plates using laser-induced breakdown spectroscopy and machine learning	K. Tomono		144
Curr	ent state of Slag2PCC (CO ₂ mineralization process) for achievement of carbon neutrality			
	Development of carbonation technology for steelmaking slag	M. Hiyoshi		145
78	Preparation of calcium carbonate spherical hollow particles from steelmaking slag by spray drying and its properties	S. Onodera		146
79	Properties of calcium carbonate spherical hollow particles obtained by spray drying from calcium extract solution prepared by carbonic acid extraction method	T. Toyama		147
	Instrumentation, Control and System Engineering			
	re No. ry Session Title	Speaker	F	^D age
	m, Control and Instrumentation			
-	Optimization of casting lot planning using column generation method	K. Maehisa		148
	Development of a logistic simulator for stable operation of coal blending plants	A. Kumano		149
	Development of Automatic grinding robot system for steel pipe	T. Watanabe		150
	The looper tension control of wire-rod mill for zero manual intervention	S. Lee		151
	Continuous measurement of iron-slag outflow temperature at blast furnace	M. Sugiura		152
	Processing for Quality Products	U		
	re No.		_	_
	ry Session Title	Speaker	F	⊃age
	Rolling, Cooling, Control 1			
	(Tawara Award) Influence of thickness profile after sizing press on width profile at head and tail portions of slab	H. Goto	•••	153
	(ISIJ Young Researcher Award) Study on cooling of moving high temperature steel plates with water coolant	K. Tatebe		
87	Collision behavior and cooling phenomenon of droplet train obliquely impinging on a moving hot solid	K. Tatebe		154

Hot Rolling, Cooling, Control 2 88 (Mishima Medal) Research and development on surface control of steel in hot manufacturing process Y. Hidaka 89 (Nishiyama Commemorative Prize) Process development of hot rolling technology for high tensile S. Fukushima 155 strength steel 90 The strip wedge control and setup in hot strip mill finisher(high speed control) V Anhe 156 . . . 91 Prediction of vibration modes causing roll polygonization in rolling machines R. Arora . . 157 Tribology 92 (Nishiyama Commemorative Prize) in situ observation of lubrication phenomenon during forging with oscillation and image analysis R. Matsumoto 158 . . . Micro-plasto hydrodynamic lubrication in cold rolling of steel sheet 2 93 (Influence of surface roughness of steel sheet) S. Inagaki . . . 159 94 Micro-plasto hydrodynamic lubrication in cold rolling of steel sheet 3 T. Nishimura 160 (Influence of surface roughness of roll) . . . 95 Effect of microstructure on adhesion force of steel N. Kikuchi . . . 161 Process, sensing 96 (Scientific Achievement Merit Prize) Establishment of transformation-free solid phase joining methods for steel plates H. Fujii 97 (Shiraishi Commemorative Prize) Metal laser powder bed fusion process simulation M. Watanabe 98 (Nishiyama Commemorative Prize) Elucidation of solidification behaviors during welding/casting T. Nagira using synchrotron X-ray . . 162 99 Analysis of anisotropy fracture during bulge forming in inconel alloy K. Toyama 163 Bar and wire 100 (Shiraishi Commemorative Prize) Research on surface quality improvement of wire rod and bar rolling H. Kushida 101 Predicting ductile fracture during torsion testing of a bar using dislocation density tensor K. Komori . . 164 102 Atomistic mechanism of defects formation and microstructural change in metal wiredrawing . . . (Molecular dynamics simulation of polycrystalline Mg wire) K. Saitoh 165 **Cutting and surface** 103 Influence of heat treatment on tool wear of high-carbon steel (S55C) R. Mineta . . . 166 104 Influence of mill scale on tool wear of heat treated high-carbon steel (S55C) H. Ohnishi 167 . . 105 Effect of tools on cutting behavior and surface microstructure in turning Ti-6Al-4V at cutting speeds K. Ishitaka of 120-310m/min . . . 168 106 Performance and film structure of developed organic-inorganic type chromate-free treatment K. Ueda . . . 169 107 Influence of shot ejection pressure on hot shot peening effect T. Miyake . . . 170

Microstructure and Properties of Materials

. .

Lectur Plenar	e No. y Session Title	Speaker	Р	age
Electr	ical steel			
108	Crystal orientation change of Fe-3%Si by simple shear deformation	N. Wada	• • •	171
109	Deformation behavior of 3%Si steel in tensile test	Y. Shingaki		172
110	Non-destructive fast orientation mapping using line-beam scanning three-dimensional X-ray diffraction microscopy	Y. Hayashi		173
111	The effect of Mn addition on the oxidation behavior of Fe-Si steel sheet	M. Fukuchi	• • •	174
Diffus	ional and nondiffusional transformation 1			
112	Crystallographic characteristics of as-quenched martensitic steel	K. Yoshida		175
113	Energy dissipation for austenite/ferrite interface migration during continuous cooling process in 0.3%C steels	K. Yamashita		176
114	A mechanism for dependency of Ms on gain size of austenite II	T. Tomida	• • •	177
115	(Scientific Achievement Merit Prize) Phase transformation and microstructure control in alloys	K. Tsuchiya		

Diffus	sional and nondiffusional transformation 2			
116	Effect of initial bainite structures on grain refinement behavior of reverted γ in Ni-Cr-Mo-V steel	T. Noto	• •	· 178
117	Formation of dual martensitic structure with high strength and high ductility through reverse transformation from coarse ferrite + Mn rich cementite structure in 0.1C-2Si-5%Mn steel	S. Torizuka		· 179
118	Re-visiting the alloy design for the synthesis of fine-structured austenitic-martensitic composites in Fe-Mn-C system	M. Muench		• 180
119	Effect of Si addition on reverted γ formation behavior during intercritical annealing in steel sheet containing Mn	K. Endoh		• 181
Hvdro	ogen embrittlement 1			
	H-induced defects in austenitic stainless steel by operando positron annihilation spectroscopy	M. Fujinami		· 182
121	Effect of stacking fault energy on hydrogen embrittlement of stable austenitic stainless steels	D. Kudo	•••	· 183
122	Mechanical and fatigue crack growth properties of 18Cr-4.8Ni low carbon stainless steel in high-pressure hydrogen environment	K. Kubota		• 184
123	Relationship between microstructure and hydrogen trapping properties of rapidly tempered high Si steel	M. Sunako		• 185
Hydro	ogen embrittlement 2			
124	Hydrogen charging method at high temperature to promote hydrogen diffusion into austenitic stainless steel	R. Ookuma		• 186
125	Internal hydrogen SSRT test of austenitic stainless steel cathodic hydrogen charged at high temperature	R. Ookuma	• •	· 187
126	(ISIJ Research Promotion Grant) Effects of NH₄SCN concentration and pH on hydrogen absorption behavior into iron sheet during cathodic hydrogen charging	S. Ajito		• 188
127	Effect of rust on hydrogen entry into steel under atmospheric corrosion environment	M. Kawamori	• •	· 189
128	Delayed fracture behavior of resistance spot-welded l-type joints of ultra-high strength steel sheet	N. Hashimoto	• •	• 190
Ducti	lity and toughness			
	Estimation method of stress-strain relationship for micro areas using pyramid indentation test	T. Sakamaki	•••	• 191
130	New equation of cleavage fracture and grain boundary fracture stress	K. Hyodo		• 192
131	Suppression of deformation-induced martensitic transformation of metastable austenitic weld metal due to temperature rise during Charpy impact test	X. Yuan		• 193
132	(Nishiyama Commemorative Prize) Research and development of high-strength, high-toughness steel plates and their welding technologies	R. Homma		• 194
Recry	stallization and texture 1			
•	(Mishima Medal) Crystalline texture control by thermos-mechanical treatment in steel sheets	K. Okuda		
134	Analysis of ferrite recrystallization in low-carbon steels with different initial microstructures (1): Relationship between dislocation characteristics and ferrite recrystallization	H. Dannoshita		• 195
135	Analysis of ferrite recrystallization in low-carbon steels with different initial microstructures (2): Role of ferrite recrystallization on microstructural evolution during intercritical annealing	T. Ogawa		• 196
Recry	stallization and texture 2			
136	Effect of Mn content on the recrystallization behavior of austenite in medium Mn steels	M. Takanashi		• 197
137	Effect of carbide morphology on continuous dynamic recrystallization process by burnishing	Y. Amano	•••	· 198
138	Microstructural changes in AISI 420 stainless steel containing Nb or Ti during solution nitriding treatment	C. Furusho		• 199
139	The effect of hot working conditions for grain size distribution on Alloy925	M. Yanagihara	• •	· 200
Aging	and precipitation			
140	(Sawamura Award) Formation mechanism of pearlite colony by multiple orientation relationships between ferrite and cementite	N. Nakada		· 201
141	Precipitation behavior of α-Cr phase in Ni-Cr binary system	R. Nagashima	• •	· 202
142	Interfacial precipitation of core-shell structured carbides in V-Nb multiple micro-alloyed steels	Y. Kawahara	•••	· 203
143	Growth of V(C,N) precipitates at the interface between recrystallized and unrecrystallized grains in work-hardened austenite in V-added high carbon steel	Y. Kobayashi		· 204
Surfa	ce treatment and corrosion 1			
	Effect of Ni as impurities in metal bath on corrosion resistance of 55%Al-Zn alloy coated steel sheets	M. Yoshida	•••	· 205
145	Effect of metallic coating composition on initial corrosion of pre-painted Zn-Al-Mg coated steel	M. Matsumoto		· 206
146	Effect of strain on behavior of Mn, Si external oxidation in 2Mn-1Si steel	N. Kirekawa		· 207

146 Effect of strain on behavior of Mn, Si external oxidation in 2Mn-1Si steel

Surfa	ce treatment and corrosion 2			
147	(ISIJ Young Researcher Award • ISIJ Research Promotion Grant) Study on the influence of environmental factors on corrosion in soil	A. Ooi		
148	Rust effect on hydrogen desorption from steel (2)	M. Akahoshi	•••	208
149	(ISIJ Research Promotion Grant) Quantification of rust distribution rate and fatigue strength of corroded high-strength galvanized steel wires for bridges	K. Miyachi		209
Struc	tural steel			
150	(Nishiyama Commemorative Prize) Development of steels for machine structural use that contribute to reducing environmental impact	N. Tsunekage		210
151	(Nishiyama Commemorative Prize) Development of high-strength steels for mechanical structures by precipitation control	S. Teramoto		211
152	Numerical analysis of carbon diffusion with carbide formation under low pressure carburizing	Y. Muto	•••	212
153	Effect of graphite muffle for steel quenching by nitrogen atmosphere	K. Shimoda	• • •	213
Hydr	ogen embrittlement 3			
•	Relationship between lattice defect formation during the incubation period of hydrogen embrittlement and fracture morphology of pure iron	Y. Sugiyama		214
155	Interaction between hydrogen atoms and dislocation movement in high strength martensitic steel	K. Saito		215
156	States of hydrogen and hydrogen embrittlement susceptibility of flake and spheroidal graphite cast irons	R. Umehara		216
157	Comparison of hydrogen embrittlement susceptibility of tempered martensitic steels adding Mo			
	and Mo-V	K. Kagiya	•••	217
Hydro	ogen embrittlement 4			
158	First-principles study of the effect of Mo addition on hydrogen segregation at α -Fe grain boundaries	K. Ito	• • •	218
159	(Tawara Award) Effect of residual stress on hydrogen embrittlement at sheared edge	Y. Sakiyama		219
160	Atomic-scale observation of hydrogen trap sites of ε -carbide and cementite in steels	J. Takahashi		220
161	In-situ 0.3mm thin wall hollow high pressure hydrogen low temperature tensile test with X-ray diffraction using synchrotron radiation	S. Torizuka		221
162	(ISIJ Research Promotion Grant) Impact of hydrogen on fracture strength of $<110>$ twist grain boundaries in α -Fe	K. Nakagawa		222
Stain	less steels			
	(ISIJ Research Promotion Grant) Temperature dependence of work hardening behavior in nitrogen-bearing austenitic stainless steel	T. Ma		223
164	Effect of C, N, and Mn on tensile properties of overaged 17-4PH with residual austenite	K. Nishimoto		224
	Effect of carbon content on sliding wear properties in martensitic stainless steels	T. Yoshizawa		225
	Effect of S on surface roughness during low speed cutting	Y. Oka		226
	Effect of 2% Al content on recrystallized behavior in hot rolled 18%Cr Steel Sheet	R. Kobayashi		227
Stron	gth and deformation behavior 1			
	(Nishiyama Commemorative Prize) Development of high strength sheet steels with high performance for automobile body	S. Kaneko		228
169	Strain induced transformation behavior of ferrite + austenite duplex steel	S. Ikegami		229
	The grain size effect on cyclic transformation strengthening in an Fe-24Ni-0.3C TRIP steel	M. Dono		230
171	Effect of hydrogen on spot weldability in ultrahigh-strength steel sheets	Y. Kondo		231
	Effects of C and Mn contents on warm V-bending and hydrogen embrittlement in ultrahigh-strength	1. 1101140		201
1,2	TRIP-aided dual-phase steel sheets	S. Aoki	• • •	232
Stren	gth and deformation behavior 2			
173	Influence of laminating Cu layers on deformation and fracture behaviors in martensitic steel	N. Koga		233
174	Improvement of fatigue limit by pre-fatigue deformation in 1.6 GPa as-quenched martensitic steel	K. Okada	•••	234
175	Effect of block size for dislocation density of high temperature tempered lath martensite	K. Miura	•••	235
176	Shear band development in bending of a martensite steel	Y. Asada		236
177	(Sawamura Award) Factors dominating damage evolution in a Fe-5Mn-0.1C medium Mn steel: Effects of martensitic transformation	M. Koyama		237

Contr	ol of microstructure and properties				
178	3D microstructure generation based on three slice images of dual phase steels using Generative Adversarial Network	K. Sugiura	•		238
179	Development of machine learning model to predict hardness-distribution of nitrided steels	G. Miyamoto	•	•••	239
180	A measurement of grain boundary segregation width by STEM-EDS	Y. Murata	•	•••	240
181	Thermodynamic analysis of grain boundary segregation in Fe-P-Mn alloys	M. Egami	•	•••	241
Mode	ling and simulation				
	Modelling of NbC precipitation and grain growth behavior in Nb added steel during pseudo carburizing	Z. Wang	•		242
183	Inverse estimation of parameters in phase-field model for $\gamma \rightarrow \alpha$ transformation in steel	K. Nakayama	•	•••	243
184	(Tawara Award) Modeling of loading-path dependent martensitic transformation in a low-alloy TRIP steel	T. Yasutomi	•		244
185	Maximization of the strength-ductility balance of dual phase steel through generative adversarial networks and Bayesian optimization	Y. Fukatsu	•		245
Heat	resistant steels and alloys 1				
186	Creep properties of modified 9Cr-1Mo steel manufactured by laser powder bed fusion	T. Hatakeyama	•	•••	246
187	Microstructural characteristics of P91 steel with low creep ductility	N. Sekido	•	•••	247
188	Creep deformation behavior of Modified 9Cr-1Mo steel in transient region and difference from that of other steels	F. Abe	•		248
Heat	resistant steels and alloys 2				
	Relationship between precipitation behavior of fine carbide particles and mechanical properties in a heat-resistant austenitic stainless steel	N. Kitagawa	•		249
190	Grain-boundary precipitation strengthening effect by P (TCP) phase in creep of Ni-Cr-Mo alloy	T. Yanagiya	•		250
191	Effects of grain size and grain boundary precipitates on room temperature tensile properties of Fe-Cr-Ni-Nb based heat resistant austenitic steels	B. Li	•		251
192	Analysis on mechanical properties and dislocation densities of 3D fabricated Hastelloy-X alloy	A. Ito	•	•••	252
Hydro	ogen embrittlement 5				
•	Numerical study on hydrogen thermal desorption spectra of high-carbon α - γ dual phase steel	K. Ebihara			253
	Hydrogen trapping energy of edge dislocation core in bcc iron: First-principles calculations	M. Yamaguchi			254
	Investigation of the effects of solute hydrogen on the deformation behavior of SUS310S <i>via</i> in situ neutron diffraction	T. Ito	•		255
196	Criteria for the nucleation of hydrogen embrittlement cracks in Ni-based superalloy 718	Y. Ogawa	•	•••	256
Hvdro	ogen embrittlement 6				
•	Effect of prior austenite grain size on hydrogen embrittlement behavior in high-strength				
	martensitic steel	X. Lan	•	•••	257
198	Multi-scale analysis on hydrogen-related intergranular fracture in martensitic steel	A. Shibata	•	•••	258
199	(Sawamura Award) Mechanism of hydrogen-related quasi-cleavage fracture in ferritic steel	K. Okada	•	•••	259
200	Influence of hydrogen on the dislocation structure of an austenitic FeMnAlC low-density steel	I. Gutierrez	•	•••	260
Stren	gth and deformation behavior 3				
201	Multimodal analysis of austenite transformation behavior in TRIP steels at bending deformation	T. Takefuji	•	•••	261
202	Analysis of plastic deformation behavior of the ferrite-martensite dual-phase steels	K. Kinoshita	•	•••	262
203	Martensite transformation and strain partitioning in a medium carbon quenching and partitioning steel	W. Yin	•		263
204	Effect of Q&P processed microstructure on stress state dependent fracture limit of ultra high strength steel	T. Kitagawa	•		264
205	Effect of Ni on tensile properties at room temperature of rolled Fe-Cr-Ni-N alloys	K. Koganezawa	•	•••	265
Stren	gth and deformation behavior 4				
	Crystal plasticity analyses of elasto-plastic deformation and dislocation accumulation in the vicinity of pearlite colony brock boundary	Y. Yasuda	•		266
207	Thermal activation process of plastic deformation in single-crystal micropillars of Fe-Cr binary alloys	N. Takata	•	•••	267
208	In situ TEM observation of the interaction between screw dislocations and prismatic dislocation loops in BCC iron	T. Inoue	•		268
209	In-situ meso scale observation of heterogeneous deformation behavior in ultra-low carbon ferritic steel	Y. Sato	•	•••	269
210	Quantification of plastic deformation by digital image correlation method and electron backscatter diffraction method	K. Ueno			270

Process Evaluation and Material Characterization

Lectur Plenai	re No. ry Session Title	Speaker		Pa	ige
Eleme	ental analysis 1				
211	(Shiraishi Commemorative Prize) Development of chemical analysis methods for steels and slags on environmental aspects	M. Aimoto			
212	Accuracy evaluation in quantitative determination of boron	T. Sumita	•••	•	271
213	Characterization of diffusion of alloying and impurity elements in solid iron by analytical techniques	S. Suzuki	•••	•	272
Eleme	ental analysis 2				
214	(Mishima Medal) Understanding origin of mechanical properties by nanostructure analysis	T. Sasaki			
215	(Nishiyama Commemorative Prize) Rapid analysis for steel related materials using cathodoluminescence	S. Imashuku		•	273
216	Microscopic characterization of low molecular weight organic acids containing ferrous ions or ferric ions	S. Suzuki		•	274
Cryst	al structure analysis				
217	(Nishiyama Commemorative Prize) Microstructural analysis for investigating of the effects on mechanical properties of steels	H. Nakamichi		•	275
218	(ISIJ Young Researcher Award) Development of X-ray diffraction analysis method and thermodynamic calculation model for iron sintered ores	T. Harano			
219	Effects of alloying elements on dislocation multiplication and dislocation motion during high temperature deformation	S. Karasawa		•	276
220	In-situ X-ray diffraction measurements of steels in compression process	S. Sugano	•••	•	277

ISIJ and JIMM Joint Sessions

Lectur Joint S	e No. Session Title	Speaker		F	Page
Titani	ium and its alloys 1				
J1	CRSS evolution of a Ti-6Al-2Sn-4Zr-2Mo-Si alloy with equiaxed (α + β) microstructures: effects of grain size and β fraction	I. Sechepee		••	278
J2	Influence of process conditions on forging and microstructure for aerospace engine Ti alloys: Internal state variables model and machine learning	H. Matsumoto		•••	279
J3	A study on precipitation-behaviors of Ti-5553 alloy using HREM method	E. Sukedai	•	•••	280
J4	Effect of substitution site on ω phase transformation in β -Ti alloys	H. Tashiro	•	•••	281
J5	Mechanistic origin of the grain size and oxygen interstitial effects on strain-induced α '' martensitic transformation in Ti-12Mo alloy	Y. Chong	•	••	282
Titani	ium and its alloys 2				
J6	(Asada Medal) Microstructure control of Ti-Mo beta titanium alloys through thermomechanical treatments	S. Emura			
J7	Effects of twinning deformation on work hardening behavior in commercially pure titanium	G. Tsukamoto	•	•••	283
J8	Crystallographic features of titanium foils manufactured with direct electro-deposition route	T. Kaneko	•	•••	284
J9	Improvement of an open atmosphere focused pulsed laser nitrided Ti surface with a controlled laser-induced plasma	A. Yoshino		•••	285
Titani	ium and its alloys 3				
J10	Origin of oxygen effect on mechanical behavior of TRIP/TWIP type metastable β titanium alloys	X. Wang	•	•••	286
J11	Effect of addition of interstitial atoms by diffusion from oxidized surface on mechanical properties of Ti-4.5Al-3V-2Fe-2Mo alloy sheet	T. Yamamoto		•••	287
J12	Microstructure and high-temperature strength of precipitation strengthened Ti-Al-Mo-O alloy	H. Okawa	•	•••	288
J13	Alternating shear fatigue crack growth and damage accumulation fatigue crack propagation in single-colony structures of Ti–6Al–4V lamellar alloy	S. Ueki		•••	289
J14	Surrogate-based optimization for fatigue crack initiation behavior in Ti-6Al-4V alloy	F. Shuo	•	•••	290
Physic	co-chemical properties of high temperature melts 1				
•	Normal spectral emissivity measurement of Ti-Nb melts using electromagnetic levitation technique	M. Adachi		•••	291
J16	Influences of oxygen adsorption on surface tension of molten Fe-Cu alloys	Y. Seimiya	•	•••	292
J17	Measurement of thermophysical properties of V melts and application of Mott's theory to thermal diffusivity	M. Watanabe			293
J18	Effects of Oxygen adsorption on surface tension of Fe-Ni and Fe-Cr binary alloy	G. Horiuchi	•	•••	294
Physic	co-chemical properties of high temperature melts 2				
•	Viscosity measurement of gas-liquid multi-phase fluid with single sphere pulling method	S. Sugi		•••	295
	Viscosity measurement of ZrO ₂ beads dispersed molten SUS316L	K. Nakanishi		•••	296
J21	Variation of incorporation limit of molybdenum in sodium silicate glasses with the addition of rare-earth oxides	Q. Huang			297
J22	Evaluation of correspondence between thermophysical property distribution and phase distribution in lunar regolith simulant(FJS-1)	S. Watanabe	•		298