The timetable the 173rd ISIJ Meeting (March 15-17, 2017 at Tokyo Metropolitan University, Minami-Osawa Campus)

1	Mar. 15	(Wad)	12 -	6 (Thu)	Mar. 1	7 (Eri)
	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.
Session Room 1 (Bldg.12 Room101)	Development of simulation tool on steelmaking processes using particle method (9:00-11:55)[Charge-Free]	p-110	Thermodynamics 1 • 2 [37-45] (9:00-12:10)	Thermodynamics of transition and tramp elements in steel for advanced sustainable steelmaking (13:20–17:00)[Charge-Free]	Refining of clean high alloyed steel 1-2 [84-91] (9:00-11:50)	
Session Room 2 (Bldg.12 Room102)	Quantification of solidification phe modeling and simulati [1–11] (9:	ion techniques 1 • 2 • 3	Solidification and structure control/Casting/Continuous casting* Solidificating [46-54] (9:00-12:20)	The outbreak mechanism of defects caused in the continuous casting process and their effects on the qualities of rolled products [D16-D22](13:00-17:10)		
Session Room 3 (Bldg.12 Room103)	Material processing at high temper: Novel pr [12-22] (9	ocessing	Transport phenomena/ Refractories [55-62] (9:00-11:50)	Understanding physical properties of high-temperature melts and its applications 1 • 2 • 3 [63-73] (13:00-17:00)	Slag • Dust treatment 1 • 2 [92-99] (9:00-11:50)	Hot metal treatment/Converter• Electric furnace/Secondary refining [100-110] (12:30-16:30)
Session Room 4 (Bldg.12 Room201)	Phenomena in the lower part of blast furnace/Packed bed structure in blast furnace [23-30] (9:00-11:50)		efficiency in	enhancement of gas-solid reaction blast furnace 9:25-16:40)	Young engineer session of iron making/Structure evaluation of raw materials 1 [111-117] (9:30-12:00)	Structure evaluation of raw materials 2 [118-122] (13:00-14:40)
Session Room 5 (Bldg.12 Room202)	Sintering processes/Analysis of sintering bed [31–36] (9:20–11:30)	_	_	Young engineer session of coke- making/Coal and coke [74-83] (13:00-16:30)	_	
Session Room 6 (Bldg.12 Room105)	Eco-technology for utilization of waste heat from iron and steel making 1 • 2 [123-130] (9:00-11:50)			Social contribution through steel industry: Coproduction and utilization of byproducts (13:00-17:00)[Charge-Free]	Capture and Separation [131-133] (10:30-11:30)	Material recycle/Historical heritage [134-139] (13:00-15:10)
Session Room 7 (Bldg.12 Room106)			System [140-142](10:00-11:00)	Control/Instrumentation [143-150] (13:10-16:00)	Prospects of data science and system modeling for problem solving in manufacturing systems and management [D11-D15] (9:30-12:00)	
Session Room 8 (Bldg.12 Room104)	Lubrication/Rolling [151–157] (9:30–12:00)		characteristics	s on thermophysical properties and of scale on steel (9:40-17:00)	Current status of production and application technologies of steel pipes and tubes used for life-line [D44-D47] (9:45-12:00)	Approaches to quality improvement of defect and inside voids in steel ingot [D48-D53] (13:00-16:30)
Session Room 9 (Bldg.12 Room203)	Equipment [158-160] (11:00-12:00)		Manufacturing technology of high quality and high functional bar and wire/Application technology of sheet/Joining and bonding [161–168] (9:10–12:00)	Advances in material modeling for the forming simulations of steel sheets [D36–D43] (13:00–17:00)	Cooling/Scale [169-176] (9:10-12:00)	15th ISIJ-JSSC Joint Symposium (13:00-16:05) [Member 2,000yen Non member 3,000yen]
Session Room 10 (Bldg.1 Room310)			Hydrogen embrittlement 1•2 [196-202] (9:30-12:00)	Hydrogen embrittlement 3•4 [203-210] (13:10-16:00)	Hydrogen embrittlement 5•6 [262-268] (9:30-12:00)	
Session Room 11 (Bldg.1 Room308)	Tensile property of dual phase steel [177-180] (10:30-11:50)		Stainless steels 1·2 [211-216] (9:30-11:40)	Present conditions and maintenance for aging infrastructure II (13:10-17:00)[1,000yen]		Surface technology/Hot-dip coating Painting/coating [269-277] (13:00-16:10)
Session Room 12 (Bldg.1 Room309)	Machine structural steel 1-2/ Tool steel [181-187] (9:20-11:50)		Microstructure and mechanical properties 1 • 2 [217–224] (9:10–12:00)	Fatigue/Strength Deformation behavior [225-232] (13:00-15:50)	Deformation structure and structural analysis 1 · 2 [278-283] (9:30-11:40)	Heat resistant steels and alloys 1 • 2 [284-292] (13:00-16:10)
Session Room 13 (Bldg.1 Room304)			Electrical steels and soft magnetic materials 1 • 2 [233–239] (9:30–12:00)			
Session Room 14 (Bldg.1 Room303)			Phase transformation 1•2 [240-246] (9:30-12:00)	Modeling*Simulation/Recovery, Recrystallization, Grain growth [247-256] (13:00-16:30)		
Session Room 15 (Bldg.1 Room301)	Phase diagram calculation/ Aging and Precipitation [188-195] (9:10-12:00)		Strip steels [257-261] (10:00-11:40)		Microstructure formation 1•2 [293–299] (9:30–12:00)	ISIJ-JIM Joint Session Ultrafine grained materials -fundamental aspects for ultrafine grained structures= 1 · 2 [J15-J21] (13:00-15:30)
Session Room 16 (Bldg.6 Room101)		Separation and utilization of phosphorus in steelmaking slag (13:00–17:00)[Charge-Free]	Hydrogen absorption into steels during corrosion III (9:30-12:00)[Charge-Free]	Effect of second phase on mechanical properties of stainless steel (13:00-16:55)[Charge-Free]	(9:10-16:15	oproaches to fundamental problems 5)[1,000yen]
Session Room 17 (Bldg.6 Room401)	Future prospects of microstructu X-ray di (9:25-16:40)[(ffraction	-further challenge-" \sim Final "Characterization of microstructure in	ture in steels with neutron beam symposium Research Group I n steels by compact neutron source~ Charge-Free]	Symposium on 20th anniversary of the technical division of Process Evaluation & Material Characterization -1 (9:30-12:00)[Charge-Free]	
Session Room 18 (Bldg.6 Room402)			Elemental analysis 1·2 [300-306] (9:30-12:00)	Inclusion analysis Organic compound analysis/Crystal structure analysis [307-313] (13:00-15:30)		
JIM Session Room O (Bldg.1 Room220)			Titanium and its	oint Session 5 alloys 1 • 2 • 3 • 4 10:30–16:40)		
	(14:00−17:00 at Band	vary membership and prize awarding, ure meeting Bldg.6 Room110) quet tional House) [7,000yen]	(12:00-15:00 at E ISIJ Be	n for Students 3ldg.8 and 9, 1st Fl.) er Party afeteria) [1,000yen]		

Symposium: Please ask to each of symposium room desks directly

Board Meeting:
Instrumentation, Control and System Engineering March 16 (Thu.) 12:30–13:00 Session Room7
Processing for Quality Products March 16 (Thu.) 12:00–13:00 Session Room9

High Temperature Processes

High Temperature Processes			
Lecture No. Discussion Sessions Title	Speaker	Pa	age
Current technologies and issues for enhancement of gas-solid reaction efficiency in blast furn	iace		
9:30-10:00 D1 Effect of porosity, temperature and gas composition on reduction rate of iron oxide and calcium ferrite	T. Maeda		1
10:00-10:30 D2 Effect of iron ore pellet properties on blast furnace gas permeability	A. Kasai		3
10:40-11:10 D3 Influence of pore structures on reducibility of iron ore agglomerates at high temperature zone	H. Kawabata		5
11:10-11:40 D4 Distributions of reduction degree and atmosphere in iron ore layer of blast furnace	S. Ueda		7
13:00-13:30 D5 Effect of temperature and gas composition on carbon deposition by H ₂ -CO	K. Nishihiro		9
13:30-14:00 D6 Gasification reactivity of iron ore/carbon composite prepared from low-grade iron ore and heavy oil	R. Ashida		11
14:00-14:30 D7 Development of reactive coke agglomerate for blast furnace operation efficiency	S. Kogure		13
14:40-15:10 D8 Influence of inner and outer hydrogen on iron oxide reduction in samples	H. Konishi		15
15:10-15:40 D9 Simulation of heat and mass transfer of packed bed in blast furnace by euler-lagrange method	S. Natsui		17
15:40-16:10 D10 Evaluation of ferro-coke reaction behavior in blast furnace	Y. Kashihara		20
Instrumentation, Control and System Engineering			
Lecture No. Discussion Sessions Title	Speaker	Pa	age
Prospects of data science and system modeling for problem solving in manufacturing system	s and managemen	nt	
Prospects of data science and system modeling for problem solving in manufacturing system 9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing	s and management	nt 	22
9:35-10:00			22 26
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25	H. Suwa		
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and	H. Suwa T. Terano		26
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25	H. Suwa T. Terano I. Hatono		26 28
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50	H. Suwa T. Terano I. Hatono S. Kurahashi		26 28 32
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50 D15 Finding multiple promising solutions and system modeling Processing for Quality Products	H. Suwa T. Terano I. Hatono S. Kurahashi		26 28 32
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50 D15 Finding multiple promising solutions and system modeling	H. Suwa T. Terano I. Hatono S. Kurahashi		26 28 32
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50 D15 Finding multiple promising solutions and system modeling Processing for Quality Products Lecture No.	H. Suwa T. Terano I. Hatono S. Kurahashi I. Ono		26 28 32 35
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50 D15 Finding multiple promising solutions and system modeling Processing for Quality Products Lecture No. Discussion Sessions Title The outbreak mechanism of defects caused in the continuous casting process and their effects	H. Suwa T. Terano I. Hatono S. Kurahashi I. Ono		26 28 32 35
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50 D15 Finding multiple promising solutions and system modeling Processing for Quality Products Lecture No. Discussion Sessions Title The outbreak mechanism of defects caused in the continuous casting process and their effects rolled products 13:05-13:35	H. Suwa T. Terano I. Hatono S. Kurahashi I. Ono Speaker s on the qualities		26 28 32 35
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50 D15 Finding multiple promising solutions and system modeling Processing for Quality Products Lecture No. Discussion Sessions Title The outbreak mechanism of defects caused in the continuous casting process and their effect rolled products 13:05-13:35 D16 Formation Mechanism of defects in continuous casting slabs 13:35-14:05 D17 Prevention of surface defects of high-aluminum alloy steel bloom 14:05-14:35 D18 Surface defects on steel sheet by laboratory experiments and evaluation of defect distribution in	H. Suwa T. Terano I. Hatono S. Kurahashi I. Ono Speaker s on the qualities E. Takeuchi Y. Shimamura		26 28 32 35 35 age
9:35-10:00 D11 Development of cyber-physical simulator for green manufacturing 10:00-10:25 D12 Work time measurement and simulation of factory workers with beacon devices 10:25-10:50 D13 Estimation of equipments connected to a university campus LAN based on connection data and analysis of outbound traffic 11:00-11:25 D14 Relationship between variable selection method and estimation model in anomaly prediction 11:25-11:50 D15 Finding multiple promising solutions and system modeling Processing for Quality Products Lecture No. Discussion Sessions Title The outbreak mechanism of defects caused in the continuous casting process and their effects rolled products 13:05-13:35 D16 Formation Mechanism of defects in continuous casting slabs 13:35-14:05 D17 Prevention of surface defects of high-aluminum alloy steel bloom 14:05-14:35	H. Suwa T. Terano I. Hatono S. Kurahashi I. Ono Speaker s on the qualities E. Takeuchi		26 28 32 35

	-	
 15:15-15:45 D20 Behavior of non-metallic inclusions in steel during hot deformation and the effects of deformed inclusions on local ductility 	K. Yamamoto	 51
15:45-16:15 D21 Effect of stress field on closure of center defects in rolling of round billets	T. Katsumura	 55
16:15-16:45 D22 Deformation behavior of surface micro defects on steel plates and bars during rolling	N. Yukawa	 59
Research progresses and challenges on thermophysical properties and characteristics of scale	on steel	
9:45-10:10 D23 Effects of surface scale layer on steel cooling	Y. Serizawa	 63
 10:10-10:35 D24 Evaluation of heat transfer characteristics of steel with oxide scales utilizing evaporation rate measurement 	Y. Ohsugi	 65
10:35-11:00 D25 Influence of oxide scale on heat transfer coefficient in hot forging	N. Yukawa	 68
11:00-11:25 D26 Characteristics of contact heat transfer between die and materials through oxide scale	S. Ueoka	 72
11:25-11:50 D27 Detection of steel scales by electrical measurement	N. Saito	 76
13:00-13:25 D28 Phase transformation property of FeO	H. Tanei	 77
 13:25-13:50 D29 Behavior of oxide scale growth and spallation due to heating processes (In-situ observation of oxide scale growth and spallation behavior by photon radiation) 	S. Nakakubo	 81
13:50-14:15 D30 Infrared reflection measurement during the scale formation on the pure iron surface	T. Yoshikawa	 82
14:25-14:50 D31 Emissivities of solid iron and its oxide scale depending on oxygen partial pressure	H. Fukuyama	 83
14:50-15:15 D32 Optical evaluation for iron oxide by spectroscopic ellipsometry and Raman scattering spectroscopy	M. Kuwahara	 86
 15:25-15:50 D33 (ISIJ Research Promotion Grant) Temperature dependence evaluation of thermal diffusivity and thermal conductivity for thermally grown iron oxide scale 	M. Li	 90
15:50-16:15 D34 Thermal diffusivity measurements of oxide scales by the flash method	M. Akoshima	 92
16:15-16:40D35 (ISIJ Research Promotion Grant) Approaches to measure high temperature thermal diffusivity and thermal effusivity of oxide scale	R. Endo	 94
Advances in material modeling for the forming simulations of steel sheets		
 13:10-13:35 D36 Effect of the determination method of the material model on the accuracy of the hole expansion forming simulation for a cold rolled steel sheet 	H. Nakano	 97
13:35-14:00 D37 Improvement of measurable strain limit in biaxial cruciform test	A. Ishiwatari	 99
14:00-14:25 D38 Parameter identification of anisotropic yield function by means of plane strain tension test	H. Hamasaki	 103
14:25-14:50 D39 Measurement and modeling of elasto-plastic deformation behavior under biaxial reverse loading	D. Yanaga	 105
15:00-15:25D40 Prediction of biaxial deformation behavior in a cold-rolled steel sheet using various crystal plasticity models	T. Hama	 109
15:25-15:50 D41 Numerical biaxial tensile test of IF steel sheet using crystal plasticity finite element method	A. Yamanaka	 110
15:50-16:15 D42 Crystal plasticity analysis of anisotropic work hardening behavior in IF steel	Y. Tsunemi	 111
16:15-16:40 D43 (ISIJ Research Promotion Grant) Measurement of plastic flow behavior of pure iron under		
nonlinear loading	T. Tsuchimoto	 113

Current status of production and application technologies of steel pipes and tubes used for life-line

9:45-10:15 D44 Remaining creep life assessment of high chromium steel piping at fossil power plants	M. Yaguchi	 114
10:15-10:45		
D45 Development of electric resistance welded steel line-pipe with excellent low-temperature toughness of the weld	T. Okabe	 118
10:45-11:15		
D46 Overview of structural strength assessment method for gas pipeline	M. Mitsuya	 122
11:15-11:45		
D47 Collapse characteristics of OCTG and line pipe	Y. Nagata	 126
Approaches to quality improvement of defect and inside voids in steel ingot		
13:05-13:35		
D48 Technology for closing of internal cavities in large ingot	T. Ishikawa	 130
13:35-14:05		
D49 A review of casting and forging technologies for specialty steel	T. Kimura	 134
14:05-14:35		
D50 Pre-cooling ingot forging method for ultralarge ingot (Development of forging technique for ultralarge shafts)	M. Tanaka	 138
14:45-15:15		
D51 Prevention technology for the center porosity of large diameter billet in forging and rolling process	M. Nakasaki	 142
15:15-15:45		
D52 Prediction of closing internal void by using free forging	H. Kakimoto	 144
15:45-16:15		
D53 Past study examples on void closure and crimping in large steel ingot	K. Mouri	 148

High Temperature Processes

Lectur Plena	re No. ry Session Title	Speaker	P	age
Quan	tification of solidification phenomena using in-situ observation, modeling and simulation	n techniques 1		
1	Time-resolved, three dimensional and in-situ observation of solidification process in Fe-C steel with X-ray CT (4D-CT)	Y. Tomiyori		152
2	Shape change due to the massive-like transformation	H. Yasuda		153
3	In situ observation of deformation during semi-solid compression in carbon steel	T. Nagira		154
	Characterization of solid/liquid mixture in horizontal centrifugal casting process	H. Esaka		155
0				
	tification of solidification phenomena using in-situ observation, modeling and simulation	-		156
	Distribution coefficients of elements between solid and liquid phase in Ni-Fe-Cr-Mo-Cu-Ti alloy	K. Mizuno		156
6	(ISIJ Research Promotion Grant) Effects of natural convection on dendrite morphology during directional solidification: Phase-field lattice Boltzmann simulations	T. Takaki		157
7	Parameter estimation for heat conduction problem based on data assimilation	Y. Oka		158
Quan	tification of solidification phenomena using in-situ observation, modeling and simulation	techniques 3		
	Estimation of macrosegregation by a solidification model considering solid motion and interaction	H. Yasuda		159
9	(ISIJ Research Promotion Grant) Cellular automaton simulation of grain structure and			
	macro-segregation under melt flow	Y. Natsume		160
10	Simulation of solidification for quinary system of stainless steel using CALPHAD database coupled non-equilibrium multi-phase field model	S. Nomoto		161
11	Multi-phase-field simulations of microstructure in solidification of Sn-0.7wt%Cu solder alloy	S. Nomoto		101
11	by nickel addition	Y. Nomura		162
Mata	rial processing at high temperature in electromagnetic field 1			
	(Invited Lecture) Microwave processing and its applications to the future automobile	H. Fukushima		163
	Averaged permittivity of metal/oxide composites and the microwave rapid heating ability	N. Yoshikawa		164
	Material processing at high temperature in electromagnetic field	K. Kashimura		165
	Construction of CO ₂ decomposition cycle using magnetite reduction enhancement	K. Kasiiiiiai		103
13	by microwave irradiation	J. Fukushima		166
Mate	rial processing at high temperature in electromagnetic field 2			
	Multi-physics simulation for smelting metal process	S. Fujii		167
17		D. Mochizuki		168
18	Utilization of microwave for fine particle formation	Y. Asakuma		169
	•			
	processing Effect of liquid flow on the segregation behavior in dendritic solidification	T. Kozuka		170
	Local flow excitation in the vicinity of interface between solid and liquid using Lorentz force	Y. Kanazawa		170
20		1. Kanazawa		1/1
21	induced by ultrasound	Y. Mano		172
22	Rate of solid NaCl dissolution into molten salt under ultrasound irradiation conditions	S. Ogino		173
Pheno	omena in the lower part of blast furnace			
	(Nishiyama Commemorative Prize) Raw material property evaluation by the elucidation of			
	premeability of the blast furnace lower	K. Sunahara		174
24	(ISIJ Research Promotion Grant) Analysis of softening and melting effect for permeability of packed bed	S. Ishihara		175
25	Effect of 3-dimensional cokes shape on packed bed structure and trickle flow of molten slag	S. Natsui		176
26	(ISIJ Research Promotion Grant) Numerical analysis of effects of intervening liquid on particle motion	A. Suzuki		177
Packe	ed bed structure in blast furnace			
27	Effect of packed particle and blast on raceway generation in blast furnace	A. Shinotake		178
28	Simulation of the softening layer shape with variable productivity in blast furnace	D. Lee		179
29	Development of control technique on pulverized coal injection for high performance operation	H. Mizoguchi		180
30	Prediction method of blow-by of blast furnace	K. Kamo		181

Sintering processes		
31 Effect of agitation at pelletizer on granulated particle structure	T. Higuchi	 182
32 Sintering technology using high ratio of pellet feed in parallel granulation process	K. Osuga	 183
33 Usage of the by-product glycerol for sintering process	T. Kon	 184
Analysis of sintering bed		
34 In-situ temperature monitoring of sinter beds at high spatial resolution	K. Taira	 185
35 In-situ monitoring of NOx emission from Lime Coating Coke (LCC) in sintering beds	K. Taira	 186
36 Numerical simulation of sintering process considering oxidation rate and reaction heat of magnetite	T. Yutani	 187
	1. Tutum	107
Thermodynamics 1	J. Park	 188
37 (Sawamura Award) Application of computational thermodynamics in steelmaking process	J. Park	 100
38 Influence of ladle slag composition on the formation behavior of oxide-sulfide complex inclusions in molten steel	J. Shin	 189
39 Thermodynamic assessment and calculations of the Fe-B-C phase diagrams	K. Oikawa	 190
40 Calculation of surface tension of liquid alloys using thermodynamic software for phase		
diagram calculation	Y. Kang	 191
Thermodynamics 2		
41 (Scientific Achievement Merit Prize) Thermodynamic properties of iron- and steelmaking slags and their effective utilization	K. Morita	
42 Effect of Na ₂ O addition on dephosphorizing ability of MnO-MgO _{stad} -Fe _t O-SiO ₂ slags	J. Liu	 192
43 Determination of activity coefficient of CuFe ₂ O ₄ in magnetite	K. Urata	 193
44 Measurement of C solubility in molten Si-M (M = Fe, Ni, Fe-Cr) alloys	S. Kawanishi	 194
45 Electrical deoxidation of molten metal by oxygen pump	Y. Morita	 195
Solidification and structure control		
46 (Nishiyama Commemorative Prize) Composition dependence of solidification microstructure:		
the present and the future of large-scale molecular dynamics simulation	Y. Shibuta	 196
47 Crystallographic investigation for nucleation and growth in initial solidification process	H. Esaka	 197
48 Formation of multiferroic composite of h-LuFeO ₃ and Fe ₃ O ₄ by means of containerless processing	K. Kuribayashi	 198
Casting		
49 (Nishiyama Commemorative Prize) Development of manufacturing technology of high nitrogen steel	F. Takahashi	 199
50 Effect of cooling rate on Nb(C,N) formation in high-Cr heat-resistant steel	S. Yano	 200
51 Surface composition of molten IF-steel under an atmosphere of industrial grade argon	W. Lin	 201
Continuous casting · Solidificating		
52 (Nishiyama Commemorative Prize) Clarification of control factor during initial stage of		
solidification of steel	M. Miyazaki	 202
53 Inflow mechanism of mold flux by measurement of friction force	S. Takaya	 203
54 Analysis of flow/powder entrapment behavior in casting mold during uphill teeming by water model experiment	N. Ueda	 204
Transport phenomena		
55 Simulation experiment on the dynamic wettability between liquid/solid by using electrocapillary method	S. Yamamoto	 205
56 Effects of velocity, interfacial tension and gravity on the formation of emulsion	Y. Tomie	 206
57 Effect of viscosity on dispersion behavior in stratified flow	N. Asahara	 207
58 A water model experiment on air entrainment during tapping	A. Okayama	 208
59 Characteristics of mass transfer at gas-liquid interface in gas-agitated vessel	H. Shimamori	 209
Refractories		
60 Improvement of refractory life for steel ladle at Wakayama steel works	S. Takashima	 210
61 The effect of curing condition on the durability of the injection refractories	Y. Tsutsui	 211
62 Effect of texture of hardened bodies on microstructure formation of castable refractories	T. Matsui	 212
52 Entert of texture of narraned ovaries on interestrate formation of custom formationes	1. 17141341	212

Unde	rstanding physical properties of high-temperature melts and its applications 1		
	(ISIJ Research Promotion Grant) Determination of thermal diffusivity of oxide scale formed on		
	ultra-low carbon steel considering scale structure	H. Hayashi	 213
64	(ISIJ Research Promotion Grant) Determination of thermal diffusivity of FeO scale on iron at high temperature by electrical-optical hybrid pulse-heating method	Y. Yang	 214
65	Thermal conductivities of solid mould fluxes under steep temperature gradient	S. Takahashi	 215
66	Thermal conductivity of multicomponent molten borosilicate	K. Tanaka	 216
Under	rstanding physical properties of high-temperature melts and its applications 2		
	Applicability evaluation of high-temperature emissivity-free radiation thermometry with Pt sphere	Y. Kurokawa	 217
	Density measurement of molten Pt using EML with static magnetic field	M. Watanabe	 218
	Wettability of graphite to molten Li ₂ Si ₂ O ₅ and its effect on crystallization behavior	M. Tashiro	 219
		N. Yang	 220
Undo	untan dina mbasical manantics of bish tamananatura malta and its annihasticus 2		
	rstanding physical properties of high-temperature melts and its applications 3 (Sawamura Award) Effect of CaO/SiO ₂ ratio on surface tension of CaO-SiO ₂ -Al ₂ O ₃ -MgO melts	S. Sukenaga	 221
	(ISIJ Research Promotion Grant) Development of high temperature viscometer under controlled	5. Sukchaga	221
12	atmosphere and viscosity measurement on nitrogen-containing silicate melts	S. Sukenaga	 222
73	Measuring impedance of silicate oxide melts in alternating electric field	Y. Harada	 223
Voun	g engineer session of coke-making		
	Suppression of carbon deposition of Muroran No.6 coke oven	N. Saito	 224
75		N. Nanri	 225
76		D. Anraku	 226
77		M. Nagayama	 227
78	Construction and operation of Kashima 1F coke oven battery	S. Unoura	 228
Coal	and coke		
	(ISIJ Research Promotion Grant • Nishiyama Commemorative Prize) Catalytic removal of coal		
,,	nitrogen and ammonia as molecular nitrogen and chlorine chemistry in coal utilization	N. Tsubouchi	 229
80	Influence of differences in sample amount on evaluation of oxidative heat generation of coal	M. Uchida	 230
81	Evaluation of mixing performance of mixer for coking coal blend	Y. Dohi	 231
82	Effect of chopper in mixer for blended coal mixing	N. Kubo	 232
83	Influence of conveyance on variability of coke strength measurement	S. Aizawa	 233
Refin	ing of clean high alloyed steel 1		
84	Compositional and morphological evolution behavior of Al and Ti oxides in solid iron during heating	M. Li	 234
85	Effect of sulfer and nitorogen on Al deoxidation of Mn containing steel	N. Sato	 235
86	Kinetics of the transformation of Al ₂ O ₃ to MgO • Al ₂ O ₃ spinel inclusions	C. Liu	 236
87	Improvement of inclusion control technology in 304 stainless steel	M. Ando	 237
Refin	ing of clean high alloyed steel 2		
	Solubility measurement of CaO and CaS in molten Fe-Ni	K. Takahashi	 238
89	CaS formation in Al-killed high-S containing steel during ladle treatment without Ca-treatment	T. Yoshioka	 239
90	(ISIJ Research Promotion Grant) Interaction between Cu and B, Ni, Co in molten iron	T. Maeda	 240
91	Equilibrium among C, Si and O in molten steel of Fe-Cr-Ni system	F. Kirihara	 241
Slag •	Dust treatment 1		
_	Effect of TiO ₂ on the structure and crystallization of CaO-SiO ₂ -MgO-Al ₂ O ₃ -FetO-P ₂ O ₅		
	Steelmaking Slags	Z. Wang	 242
93	(Tawara Award) The conditions of ettringite formation by the reaction of a blast furnace slag with	A II	2.42
0.4	aqueous alkaline solutions Effect of No O addition on pheenhorus dissolution from steelmaking sleet with	A. Harashima	 243
94	Effect of Na ₂ O addition on phosphorus dissolution from steelmaking slag with high P ₂ O ₅ content by leaching	C. Du	 244
95	Chlorination reaction of EAF dust by CaCl ₂	G. Sun	 245

		-	
Slag·	Dust treatment 2		
96	(ISIJ Young Researcher Award) Effect of mineralogical phases on the dissolution behavior of steel slag fertilizer	X. Gao	
97	Effects of pH, ORP and acids on the dissolution behavior of Fe from CaO-SiO ₂ -FeO _x glassy phase	S. Koizumi	 246
98	Evaporation of phosphorus from dephosphorization slag by carbothermic reduction	H. Yu	 247
99	Separation of phosphorus and manganese in dephosphorization slag by carbothermic reduction	D. Shin	 248
Hot n	netal treatment		
100	(Nishiyama Commemorative Prize) Formation of multi-phase flux and condensation of phosphorus during refining process	H. Matsuura	 249
101	Fluidity evaluation of hot metal pretreatment slags	T. Nakasuga	 250
102	Utilization of arc furnace ash to KR desulfurization process	T. Adachi	 251
Convo	erter · Electric furnace		
103	Renewing the EAF gunning manipulator	K. Shinkawa	 252
104	Assembly of the multi-material recycling system by applying electric arc furnace for melting ferro-alloy	T. Miyazaki	 253
105	The simulation of temperature decomposition of the carbonate injected into the molten iron	Y. Tsurukawa	 254
106	Influence of top and bottom blowing conditions on spitting generation behavior in converter	S. Amano	 255
107	Influence of interference between burner flame from center nozzle and oxygen jet from surrounding nozzles on flame and powder temperature	K. Nakase	 256
Secon	dary refining		
108	(Nishiyama Commemorative Prize) Development of new type vacuum degasser for ultra-low carbon steel	K. Miyamoto	 257
109	Desulfurization of steel with Ce and the CaO-AlO _{1.5} -CeO _{1.5} slag	K. Morita	 258
110	Mechanism and simulation of droplet coalescence in molten steel	B. Ni	 259
Young	g engineer session of iron making		
111	Challenges of using large amounts of magnetite fine ore in pellet production	T. Kato	 260
112	Chemical reforming for high adhesive raw materials	Y. Kinugasa	 261
113	Evaluation of dynamic cohesive properties of iron ore powders	T. Fujisaka	 262
Struc	ture evaluation of raw materials 1		
114	FeOx-CaO-SiO ₂ -MgO phase diagram at 1573 K and oxygen partial pressure of 10-6 atm	H. Tanaka	 263
115	Effect of SiO ₂ distribution in raw materials on needle-like calcium ferrite formation in sintered ore	R. Nishigaki	 264
116	Raw material design for manufacturing the sinter texture appropriate to high H2 atmosphere	Y. Motomura	 265
117	Research on the influence mechanism of MgO on sinter strength	H. Han	 266
Struc	ture evaluation of raw materials 2		
118	Evaluation of the reducibility of synthesized SFCA using high-temperature X-ray diffraction	B. Cai	 267
119	Effect of mineral composition and atmosphere on the reducibility of quaternary calcium ferrite	D. Maruoka	 268
120	TEM Analysis of the silicon-hematite reaction	N. Ishikawa	 269
121	Effect of sulfur form and basicity on carburization and melting of carbonaceous material and iron ore composite	T. Murakami	 270
122	Effect of temperature on melting behavior of iron ore/coal composite pellets in tall bed	T. Huang	 271

Environmental, Energy and Social Engineering

Lectu Plena	re No. ry Session Title	Speaker	F	Page
Eco-t	echnology for utilization of waste heat from iron and steel making 1			
	Development of high-density thermal energy storage technology by using phase change materials	K. Nakamura		272
	Effect of rotation rate on heat release rate in latent heat storage bath by scraping solidified layer	N. Maruoka		273
	Effect of bridge formed between particles on heat transfer enhancement in the packed bed reactors	K. Nakaso		274
	Techno-economic analysis of waste heat recovery and transportation system by trans-heat container	S. Kimura		275
		S. 121111414		2,0
	echnology for utilization of waste heat from iron and steel making 2			
127	(ISIJ Young Researcher Award) Development of latent heat storage materials to utilize exhaust heat from steelworks	T. Nomura		
120				276
	Heat storage materials utilizing solid phase transformation for rapid carbonization process of biomass	D. Maruoka		276
129	(R. Teranishi		277
130	The gasification of coal with FeO-containing slag under CO ₂ -Ar atmosphere	Y. Wu		278
Capti	re and Separation			
131	(ISIJ Research Promotion Grant) Removal of hydrogen sulfide and ammonia in coke oven gas			
	by limonite	Y. Mochizuki		279
132	(ISIJ Research Promotion Grant) Formation of ionic liquid gels based on aprotic organic gelators and	11.01		200
	application to carbon dioxide absorption materials	H. Okamoto		280
133	Capture of heavy metal by iron and steelmaking slag	Y. Yao		281
Mate	rial recycle			
	(ISIJ Young Researcher Award) Input-output based material flow analysis of steel alloying elements	H. Ohno		
	Model research of thermal decomposition kinetics of limestone	L. Zhang		282
	Evaporation behavior of boron in coal during low temperature drying	J. Gamutan		283
	rical heritage			
137	Physico-chemical state in Koshiki furnace for melting pig iron produced by Tatara	K. Nagata		284
138	Process engineering for dynamic states and morphology in low height furnace refining reactions	37.34		205
120	with iron-sand	Y. Matsui		285
139	Features and transitions of iron smelting furnace in ancient mongolia	T. Sasada		286
Lectu	Instrumentation, Control and System Engineering			
	e No. ry Session Title	Speaker	F	Page
		opou.io.		age
Syste		A. Horio		207
	Decision support tool for inquiry examination using concordance analysis	K. Ito		287
	Development of optimization method for continuous casting schedules for a plate mill - 2			288
142	Fault detection system based on data-driven modeling	T. Hirata		289
Conti	ol			
143	(Shiraishi Commemorative Prize) Development of equipment and control technologies for steel rolling	J. Tateno		
144	Development of estimation of molten steel surface profile in continuous casting mold	H. Yamamoto		290
145	Tip automatic gauge control in consideration of roll gap behavior at the time of metal biting of			
	the rolling mill	T. Wada		291
Instr	imentation			
	Quantification of carbon adhesion on coking-chamber walls	M. Sugiura		292
	Defect image recognition using convolution neural network	T. Ashida		293
148		T. Koshihara		294
		i. Kusiiiiaia	- •	<i>∠7</i> +
149	The report on the research group of pipe wall measurements using the circumferential guided waves (10) (Development of the circumferential guided wave piping inspection technology			
	by the magnetostrictive sensor method 3)	T. Ikeda		295
150	The report on the research group of pipe wall measurements using the circumferential guided waves (11)			
	(Development of the circumference guided wave pipe inspection technology	V A		207
	by the piezoelectric method)	K. Asami		296

Processing for Quality Products

Lectur Plenar	e No. y Session Title	Speaker	P	age °
Lubri	cation			
151	Effects of work roll surface texture to mixed lubrication in cold rolling	A. Miura		297
152	(ISIJ Research Promotion Grant) Tribological behavior under oleylamine added poly-alpha-olefin oil in nanostructured ultra-low carbon steel produced by severe plastic deformation	Y. Todaka		298
153	Electron microscopic analysis of surface layer formed by lubricant reaction in severe-plastic-deformed ultra-low carbon steel	M. Mitsuhara		299
Rollin	σ			
	(ISIJ Young Researcher Award • Tawara Award) Strip warpage behavior and mechanism in single roll driven rolling	D. Kasai		300
155	Influence of cross between rolls on change of thrust and vertical forces	A. Ishii		301
156	Construction of FEM model of plug-mill rolling	K. Fujimura		302
157	Residual stress simulation for hot strip composite roll considering creep	Y. Sano		303
Equip	ment			
	Improvement in direct rolling mill operation	H. Agawa		304
	Scale inhibition for water pipe of primary scrubber at OG system	T. Kikkawa		305
	Wireless AE measurement for FSW of long size steel plate	M. Katayama		306
		J		
	facturing technology of high quality and high functional bar and wire Predicting ductile fracture during tensile tests using the ellipsoidal void model and representative			
	volume element	K. Komori		307
162	Fundamental study of structural analysis of reinforced concrete -1 (Proposal of the finite elementary material mechanics for functional design of composite material-12)	T. Yoshida		308
163	Fundamental study of structural analysis of reinforced concrete -2 (Proposal of the finite elementary material mechanics for functional design of composite material-13)	T. Yoshida		309
164	Fundamental study of structural analysis of reinforced concrete-3 (Proposal of the finite elementary material mechanics for functional design of composite material-14)	T. Yoshida		310
Appli	cation technology of sheet/Joining and bonding			
	(Nishiyama Commemorative Prize) Development of application technologies for high strength steel sheets	J. Hiramoto		311
166	(Mishima Medal) Development of members for vehicle collision and background of it	M. Tasaka		
167	(Mishima Medal) Development of advanced gas metal arc welding technology -Application of clean MIG welding to various materials-	T. Nakamura		
168	Diffusion bonding mechanisms of severely deformed austenitic stainless steel	N. Sato		312
Coolin				
Coolii 169	(Nishiyama Commemorative Prize) Cooling performance in intensive water cooling with high water flow rate	N. Nakata		313
170	Influence of flow rate on water droplet behavior in high pressure descaling	Y. Tamura		314
	Effect of varying oil concentration in O/W emulsion on the collision dynamics of drops with hot solid	H. Fujimoto		315
	Effect of varying on concentration in G/ W emalster on the consisting names of those with not some	II. I djillioto		515
Scale	(Chinaishi Cananananti a Daira) Dilataria ababasian danina anida anda farmatian an atada anfa	V V anda		
	(Shiraishi Commemorative Prize) Blistering behavior during oxide scale formation on steel surface	Y. Kondo		216
	Mechanical consideration of driving force for blister (ISH Young Peacershop Award) Pediation of iron avide scale formed an steel surface.	N. Kubota		316
1/4	(ISIJ Young Researcher Award) Reduction of iron-oxide scale formed on steel surface by containing elements	K. Ikeda		
175	Effect of Si coating on high temperature oxidation of iron	S. Egawa		317
	Sliding phenomenon of oxide scale against matrix steel during hot rolling	H. Utsunomiya		318

Microstructure and Properties of Materials

Lectur Plenai	e No. y Session Title	Speaker	F	Page
Tensil	e property of dual phase steel			
177	(Sawamura Award) Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides	N. Kamikawa		319
178	Microscopic deformation of bainite-MA steel analyzed by using micro-grid method	K. Yasuda		320
179	High speed deformation behavior of a 1 GPa grade TRIP-aided multi-microstructure steel	N. Tsuchida		321
180	Effect of microstructural connectivity on strength of steels with duplex microstructure	N. Nakada		322
Mach	ine structural steel 1			
	Influence of tempering temperature on mechanical properties in high Si-added high carbon martensitic steels	S. Teramoto		323
182	Effects of small strain and cooling rate on grain coarsening in hot working for case hardening steel	T. Miyazaki		324
183	Carbon and nitrogen diffusion treatment using iron powder for austenitic stainless steel	T. Maeda		325
Mach	ine structural steel 2 · Tool steel			
	(ISIJ Research Promotion Grant) Observation of microstructure around fatigue crack origin using EBSD and FIB	K. Mizobe		326
185	Derivation of high-temperature and brief tempering conditions for SUJ2	M. Sato		327
	Effect of P on quench-tempering behavior of hypereutectoid steel -1	Y. Matsumura		328
187	Effect of P on quench-tempering behavior of hypereutectoid steel -2	Y. Hosoya		329
Dhaga	diagram calculation			
	(Asada Medal) Progress in phase diagrams of Fe-based alloys	T. Abe		
	(ISIJ Research Promotion Grant) alpha/gamma equilibrium and thermodynamic analysis of the Fe-Mn binary system	I. Ohnuma		330
190	Transition process of metastable carbides studied by the calculated phase diagram of the Fe-C binary system	M. Saeki		331
191	Dependence of alloyed elements on stability of iron carbide	H. Sawada		332
	and Precipitation Effect of refinement of Laves-phase precipitates by using GP-zone on mechanical property in			
1/2	18Cr-0.9Nb ferritic stainless steel	H. Kawata		333
193	Change of titanium carbide morphology during ostwald ripening	N. Kosaka		334
194	Dominating factors on dispersion of MC interphase precipitates in low carbon steels	Y. Zhang		335
195	Analysis of tempering process of high carbon martensitic steel based on thermal analysis and thermal expansion measurement	T. Suzuki		336
Hydro	ogen embrittlement 1			
•	Simulation of thermal desorption spectrum of martensite/austenite composite specimen	M. Enomoto		337
197	Phase-field simulation of vacancy-hydrogen cluster formation in iron	T. Sone		338
198	Prevention of hydrogen embrittlement in steels by ultra rapid cooling thermal spray coating	R. Mizutani		339
Hvdro	ogen embrittlement 2			
•	Effect of hydrogen on fatigue-crack growth of a ferritic-pearlitic steel	A. Nagao		340
200	Influence of hydrogen addition on the fatigue properties of 0.1and 0.2wt% carbon-based martensitic sheet steels	Y. Numata		341
201	Effect of Mn content and amount of retained austenite on rolling contact fatigue strength due to hydrogen embrittlement	T. Kinami		342
202	Effect of hydrogen on fatigue life properties of welded joint for austenitic stainless steel plates	S. Okazaki		343
Hydra	ogen embrittlement 3			
•	Study for establishment of high precision evaluation methods for very small amount of hydrogen in steels by thermal desorption spectroscopy	H. Komatsu		344
204	Interpretation of hydrogen peak at 300 to 400 degC region in TDS-gas-chromatography when rusting steel or rust-removed steel is analyzed (1): Reaction with rust	Y. Ishiguro		345
205	Interpretation of hydrogen peak at 300 to 400 degC region in TDS-gas-chromatography when rusting steel or rust-removed steel is analyzed (2): Extended concept to reaction with crystal water	Y. Ishiguro		346
206	Trapping states of hydrogen in high-carbon ferrite/austenite dual phase steels	D. Sekine		347
	11 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			,

Hvdr	ogen embrittlement 4		
•	Hydrogen content and crosshead speed dependence of stress-strain curve of tempered martensitic steel	H. Kamei	 348
208	Relationship between hydrogen embrittlement properties and hydrogen accumulation behavior in low carbon martensitic steel	A. Shibata	 349
209	Hydrogen embrittlement behavior of precipitation-hardening austenitic steel (3rd report)	T. Hosoda	 350
210	States of hydrogen and hydrogen embrittlement susceptibility of precipitation hardening stainless steel	Y. Hayashi	 351
Stain	less steels 1		
	(Satomi Prize) Electrochemical micro- and nano-analysis: localized corrosion mechanisms of steels and		
	challenges to corrosion mitigation	I. Muto	
212	Microelectrochemical properties of grain boundary of sensitized stainless steel	N. Ida	 352
213	(ISIJ Research Promotion Grant) Development of adhesion technology between coating material and metal	M. Inoue	 353
Stain	less steels 2		
214	High-temperature deformation behavior of stainless steels	C. Takushima	 354
215	Fine structure analysis of high temperature heat treated SUSXM15J1 using FIB-SEM tomography	M. Ochi	 355
216	The effect of Ta addition on intermetallic compounds precipitation behavior of		
	super duplex stainless steel	N. Nishizawa	 356
Micro	ostructure and mechanical properties 1		
217	(Nishiyama Commemorative Prize) Microstructure control for environmental friendly steel products and their applications	K. Kawano	 357
218	Fe-Ni-Al-C based alloys with high strength and large ductility-1 (Formation of a heterogeneous microstructure by cold rolling)	T. Furuta	 358
219	Fe-Ni-Al-C based alloys with high strength and large ductility-2 (Tensile behavior)	I. Miyazaki	 359
220	Fe-Ni-Al-C based alloys with high strength and large ductility -3 (Microstructure and mechanical properties of fine grained flat- rolled Fe-Ni-Al-C alloy)	S. Hiruta	 360
Micro	estructure and mechanical properties ?		
	ostructure and mechanical properties 2 Microstructure and strength of hetero-nano structure and mechanical properties of heavily		
	Distructure and mechanical properties 2 Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels	H. Miura	 361
221	Microstructure and strength of hetero-nano structure and mechanical properties of heavily	H. Miura C. Watanabe	 361 362
221 222	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels		
221222223	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels	C. Watanabe	362
221 222 223 224	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel	C. Watanabe Y. Todaka	 362 363
221 222 223 224 Fatigu	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel ue Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including	C. Watanabe Y. Todaka Y. Honma	 362 363 364
221 222 223 224 Fatigu 225	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel ue Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect	C. Watanabe Y. Todaka Y. Honma B. Fabien	 362 363 364 365
221 222 223 224 Fatigl 225 226	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel ue Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka	 362 363 364
221 222 223 224 Fatigl 225 226 227	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel	C. Watanabe Y. Todaka Y. Honma B. Fabien	 362 363 364 365 366
221 222 223 224 Fatige 225 226 227 Stren	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel ue Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura	 362 363 364 365 366 367
221 222 223 224 Fatigi 225 226 227 Stren 228	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka	 362 363 364 365 366
221 222 223 224 Fatigu 225 226 227 Stren 228 229	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in polycrystalline Fe-Si alloy	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura	 362 363 364 365 366 367
221 222 223 224 Fatigu 225 226 227 Stren 228 229	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura F. Jiang T. Mizuguchi T. Masumura	 362 363 364 365 366 367
221 222 223 224 Fatigg 225 226 227 Stren 228 229	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in polycrystalline Fe-Si alloy Contribution of deformation-induced martensite to work hardening behavior in carbon- and	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura F. Jiang T. Mizuguchi T. Masumura Y. Lingling	 362 363 364 365 366 367 368 369
221 222 223 224 Fatigi 225 226 227 Stren 228 229 230 231	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in polycrystalline Fe-Si alloy Contribution of deformation-induced martensite to work hardening behavior in carbon- and nitrogen-added metastable austenitic steels	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura F. Jiang T. Mizuguchi T. Masumura	 362 363 364 365 366 367 368 369 370
221 222 223 224 Fatigi 225 226 227 Stren 228 229 230 231 232	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel age Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in polycrystalline Fe-Si alloy Contribution of deformation-induced martensite to work hardening behavior in carbon- and nitrogen-added metastable austenitic steels Solute C on deformation behavior of yields' Luders band	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura F. Jiang T. Mizuguchi T. Masumura Y. Lingling	362 363 364 365 366 367 368 369 370 371
221 222 223 224 Fatigum 225 226 227 Stren 228 229 230 231 232 Electr	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel are Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in polycrystalline Fe-Si alloy Contribution of deformation-induced martensite to work hardening behavior in carbon- and nitrogen-added metastable austenitic steels Solute C on deformation behavior of yields' Luders band Prediction on young's modulus of high modulus steel sheet dispersed particles rical steels and soft magnetic materials 1 (Tawara Award) Proposal of two-dimensional local curvature multi-vertex model for grain	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura F. Jiang T. Mizuguchi T. Masumura Y. Lingling D. Ito	362 363 364 365 366 367 368 369 370 371 372
221 222 223 224 Fatigg 225 226 227 Stren 228 229 230 231 232 Electi 233	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel age Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in polycrystalline Fe-Si alloy Contribution of deformation-induced martensite to work hardening behavior in carbon- and nitrogen-added metastable austenitic steels Solute C on deformation behavior of yields' Luders band Prediction on young's modulus of high modulus steel sheet dispersed particles rical steels and soft magnetic materials 1 (Tawara Award) Proposal of two-dimensional local curvature multi-vertex model for grain growth simulation	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura F. Jiang T. Mizuguchi T. Masumura Y. Lingling	362 363 364 365 366 367 368 369 370 371
221 222 223 224 Fatigg 225 226 227 Stren 228 229 230 231 232 Electi 233	Microstructure and strength of hetero-nano structure and mechanical properties of heavily cold-rolled duplex stainless steels Nano-indentation hardness of hetero-nano structure in heavily cold rolled stainless steels Age-hardening behavior of austenitic stainless steel 316LN after severe plastic deformation Effect of C content on mechanical properties of intercritical quenched Cu-containing low alloy steel are Crystal plasticity simulations of stage i fatigue damage in dual-phase steel specimens including an elliptic defect Evaluation of the effect of chemical composition and weld geometries on fatigue life of welded structures Effect of edge face machining on fatigue property of high-strength electrical steel gth · Deformation behavior Role of silicon addition in grain refinement strengthening of ferritic steel (ISIJ Research Promotion Grant) Effect of Mn addition on the deformation activation volume in polycrystalline Fe-Si alloy Contribution of deformation-induced martensite to work hardening behavior in carbon- and nitrogen-added metastable austenitic steels Solute C on deformation behavior of yields' Luders band Prediction on young's modulus of high modulus steel sheet dispersed particles rical steels and soft magnetic materials 1 (Tawara Award) Proposal of two-dimensional local curvature multi-vertex model for grain	C. Watanabe Y. Todaka Y. Honma B. Fabien H. Tanaka K. Fujimura F. Jiang T. Mizuguchi T. Masumura Y. Lingling D. Ito	362 363 364 365 366 367 368 369 370 371 372

Electi	rical steels and soft magnetic materials 2		
	Effect of hot deformation on precipitation and growth behavior of MnS in 3%Si steel	R. Yamagata	 375
237	Effect of the misfit between MnS and Al ₂ O ₃ -SiO ₂ on the heterogeneous nucleation behavior of MnS during the solidification process	F. Li	 376
238	Evaluation of strain distribution due to shearing in non-oriented electrical steel using synchrotron radiation	Y. Zaizen	 377
230	Changes of magnetic domains in Fe-Ga alloy single crystals by stresses and magnetic fields	S. Suzuki	 378
239	Changes of magnetic domains in Fe-Ga anoy single crystals by stresses and magnetic fields	S. Suzuki	 376
	transformation 1		
240	Consideration of crystal orientation selection between ferrite and cementite in pearlite from elastic theory	N. Nakada	 379
241	Bainite transformation start temperature on ultra low carbon Fe-9mass%Ni alloy - Effect of carbon content on bainite transformation start temperature of Fe-9mass%Ni alloys 1 -	H. Kawata	 380
242	Bainite transformation start temperature on low carbon Fe-9mass%Ni alloys - Effect of carbon content on bainite transformation start temperature of Fe-9mass%Ni alloys 2 -	H. Kawata	 381
243	Bainite transformation start temperature on medium and high carbon Fe-9mass%Ni alloys - Effect of carbon content on bainite transformation start temperature of Fe-9mass%Ni alloys 3 -	H. Kawata	 382
Phase	transformation 2		
244	(Nishiyama Commemorative Prize) Characteristic analysis of lath martensite and bainite using local crystallographic analysis	S. Morito	 383
245	(ISIJ Research Promotion Grant) Local orientation relationship distribution and variant pairing in lath martensite of a steel	T. Hayashi	 384
246	Crystallographic analysis on 3 dimensional ferrite and martensite microstructure of an Fe-C-Mn alloy	K. Hata	 385
Mode	ling · Simulation		
	(ISIJ Young Researcher Award) Phase-field simulation of microstructure evolution in structural materials	Y. Tsukada	
248	Microscale analysis model on damage fracture for ferrite-bainite dual phase steel	S. Ota	 386
249	Numerical analysis of the effects of austenite texture on variant selection in austenite-ferrite phase transformation	Y. Suwa	 387
250	Evaluation of interaction energy between hydrogen and substitutional atoms in Fe based on first-principles calculations	M. Enoki	 388
251	Evaluation of i-s interaction in BCC-Fe based on first-principles calculations	H. Ohtani	 389
Recov	ery, Recrystallization, Grain growth		
252	Phase-field simulation of the effects of second-phase particles on abnormal grain growth	Y. Suwa	 390
253	In-Situ heating TEM study on twinned martensite in quenched Fe-1.4C alloys	D. Ping	 391
254	Effects of excess C addition on static recrystallization behavior and texture evolution in extra low carbon cold rolled steel sheets	H. Miura	 392
255	Atomic scale characterization of vanadium state in recrystallization-retarded work-hardened austenite in low alloy high carbon steel	Y. Kobayashi	 393
256	In-situ measurement of austenite grain size through reverse transformation of low carbon steel	K. Ueda	 394
Strip	steels		
	(Nishiyama Commemorative Prize) Plastic behavior and deformation microstructure of		
	high-manganese austenitic steel	R. Ueji	 395
258	(Nishiyama Commemorative Prize) Effects of annealing conditions on tensile strength of recovery annealed steel sheet	K. Kojima	 396
259	Roles of solute C and grain boundary in strain aging behaviour of ultra-low carbon steel sheets - 1	Y. Ono	 397
260	Roles of solute C and grain boundary in strain aging behaviour of ultra-low carbon steel sheets - 2	Y. Ono	 398
261	Effects of initial state of distribution of solute C and strain in strain aging behaviour of ultra-low carbon steel sheets	Y. Ono	 399
Hydro	ogen embrittlement 5		
•	Compatibility of high-strength aluminum alloy 7075 to high-pressure gaseous hydrogen	Y. Ogawa	 400
	Hydrogen induced flow localization in Al-Zn-Mg alloy	H. Toda	 401
	Analysis of crack growth behavior by ultra-high resolution X-ray microscopy	K. Shimizu	 402

		,	
Hydro	ogen embrittlement 6		
265	In-situ microbending test during hydrogen charging of grain boundaries in Ni-Cr alloy	K. Tomatsu	 403
266	Hydrogen-induced slip and hydrogen-induced slip fracture surface	T. Ogata	 404
267	Effect of hydrogen on the mechanical properties of a duplex stainless steel	A. Yousefi	 405
268	(ISIJ Research Promotion Grant) Classification of SSRT fracture morphology for austenitic stainless steels with external and internal hydrogen	O. Takakuwa	 406
Surfa	ce technology		
269	(Scientific Achievement Merit Prize) Present state and visions of evaluation methods of corrosion behaviors for life-time prediction	T. Shinohara	
270	Coating structure change of GA-HS after tempering treatment	A. Sengoku	 407
271	Effect of crystal orientation of steel substrate on growth of Zn-Fe intermetallic compounds in hot-dip galvannealing	K. Ota	 408
272	(ISIJ Research Promotion Grant) Small volume deformation and fracture of intermetallic compounds in the Fe-Zn system comprising the coating of galvannealed steels	N. Okamoto	 409
273	Microstructural observation of a hot-dip Zn-Al coating using EBSD technique	T. Mitsunobu	 410
Hot-d	ip coating · Painting/coating		
	Surface enrichment behavior of melamine-formaldehyde in water-based polyester / melamine film for pre-painted steel sheet	A. Muto	 411
275	Effect of dew point and gas flow rate on the surface oxidation of galvanized high strength steels	I. Sohn	 412
276	Composition dependence of hardness in the Zn-Fe binary intermetallic compounds	K. Han	 413
277	Growth rate of intermetallic compound layer of hot-dip Si-added Al coated steel	K. Shinozuka	 414
Defor	mation structure and structural analysis 1		
	Examination of voids nucleation and growth behavior for high tensile strength steels in tensile test		
	by synchrotron radiation X-Ray laminography	Y. Mugita	 415
279	Analysis of closure behavior of internal void in steel during hot compressive deformation by syncrotron radiation X-Ray laminography	K. Watanabe	 416
280	Discussion on quantitative evaluation of dislocation structure using neutron diffraction	Y. Tomota	 417
Defor	mation structure and structural analysis 2		
281	(ISIJ Research Promotion Grant) Analysis of high strength and high ductility mechanism in 0.1%C-2%Si-5%Mn ferrite+austenite steels by synchrotron radiation	S. Torizuka	 418
282	In situ neutron diffraction experiments during room temperature creep test in a TRIP steel	N. Tsuchida	 419
283	(ISIJ Research Promotion Grant) 2D climb diffusion of nanoscale dislocation loops in iron	K. Arakawa	 420
Heat	resistant steels and alloys 1		
	(Scientific Achievement Merit Prize) Microstructure formation in heat-resisting metallic materials and their properties depending on the microstructures	Y. Murata	
285	Relation between change in gibbs free energy during creep and diffusion	M. Tamura	 421
286	Improvement of ductility of Fe-Al-Ni-Cr-Mo heat-resistant alloys by alloy design and microstructure control	K. Ikeda	 422
287	Microstructure of intermetallic phases in equilibrium with a1 phase in Ni-Nb-Co ternary system	S. Ida	 423
288	Effect of Neodymium addition on high-temperature mechanical properties of alloy 617	T. Hamaguchi	 424
Heat	resistant steels and alloys 2		
	(Nishiyama Commemorative Prize) Effects of dispersion of fine Laves phase precipitates on creep properties of ferritic heat resistant steels	S. Kobayashi	 425
290	The effect of nitrogen and microstructure on high temperature oxidation behavior in high nitrogen ferritic steels	S. Matsubara	 426
291	Martensite structure and creep properties of ferritic heat-resistant steel added with nitrogen or carbon	S. Yamasaki	 427
292		S. Nakahashi	 428

		•		
Micro	ostructure formation 1			
293	(ISIJ Research Promotion Grant) In-situ analysis on the mechanism of strain-induced transformation retardation by grain refinement in austenitic stainless steel	S. Torizuka		429
294	Fresh martensite formed by intercritical annealing and its effect on the mechanical property of medium Mn steel	H. Oyamada		430
295	In-situ neutron diffraction study on microstructure evolution during thermomechanical processing in medium Mn steel	Y. Nakamura		431
296	Nucleation of pearlite in austenite-ferrite dual phase steel	H. Hasegawa		432
Micro	ostructure formation 2			
	(Nishiyama Commemorative Prize) Behavior of segregation to prior austenite grain boundaries and hardenability in Mo and B added steels	J. Takahashi		433
298	Evaluation of distribution behavior of alloy elements in martensite-austenite constituent in the heat-affected zone of a low alloy carbon steel by 3 dimensional atom probe	M. Inomoto		434
299	Atomic-scale analysis of carbon partitioning into austenite during quenching and partitioning heat treatment	Y. Toji		435
	Process Evaluation and Material Characterization			
Lectur				
Plenai	ry Session Title	Speaker	P	age
	ental analysis 1			
300	(Tawara Award) Development of new ultraviolet fluorescence spectroscopy after combustion for precise determination of trace sulfur in steel	S. Kinoshiro		436
301	Problems in the official method of high-Cobalt analysis	M. Ota		437
302	ISO TC102/SC2/WG54 X-Ray fluorescence analysis of iron ore including total iron	A. Ohbuchi		438
Eleme	ental analysis 2			
303	Improvement in signal response of in-depth elemental profiles in glow discharge optical emission spectrometry by using a bias-current introduction method	K. Sakane		439
304	Development of surface treatment method for biomaterial Co-Cr-Mo alloy by glow discharge plasma using chromium hollow cathode	K. Furukawa		440
305	Measurement of lithium distribution in lithium-ion battery cathode in charge/discharge process by using laser-induced breakdown spectroscopy	H. Taguchi		441
306	Development of scanning laser induced plasma emission spectrometer using 1 kHz-1 mJ class Nd:YAG laser	T. Matsuda		442
Inclus	sion analysis · Organic compound analysis			
307	(Shiraishi Commemorative Prize) Development of particle analysis technique in metal from single nanometer to millimeter size	K. Mizukami		
308	Effect of trace elements in an inclusion on its cathodoluminescence spectrum	S. Imashuku		443
309	Evaluation of biofilm adhesion by dispersed state of metal nano-powder in silane-based resin	K. Sano		444
310	Microbiota analysis of biofilm formed on the metallic nano-particles dispersed silane-based resin coated SS400	A. Ogawa		445
Cryst	al structure analysis			
•	Evaluation of the volume fraction of multi phase steel with neutron beam - Compact neutron source RANS -	Y. Ikeda		446
312	Accurate online measurement of alloying degree of a galvannealed coating layer by peak shift of X-ray diffraction	T. Aoyama		447
313	Formation of electron beam-induced contamination on Fe and technologies for its suppression	Y. Tanaka		448

ISIJ and JIM Joint Sessions

	iolo ana onii oonii oosiin			
Lectur Plena	re No. ry Session Title	Speaker	F	Page
Titan	ium and its alloys 1			
J1	Effect of hydrogen peroxide concentration on the dissolution rate of commercially pure titanium in hydrofluoric acid solution	M. Ogino		449
J2	Effects of temperature on oxidation behavior of a Ga-added near-α Ti alloy	Y. Yang		450
J3	Effect of Si addition on thermal oxidation of Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy in air	S. Suzuki		451
J4	First principles molecular dynamics study for oxidation on Ti surface at elevated temperature	S. Bhattacharya		452
Titan	ium and its alloys 2			
J5	Hot deformation behavior and globularization mechanism of lamellar Ti-6Al-4V within a wide range of deformation temperatures	Y. Chong		453
J6	Influence of microstructure sizes on creep rate of Near-α type Ti alloy	T. Ito		454
J7	High temperature fatigue behavior of near-alpha titanium alloy with high zirconium	J. Murugesan		455
Titan	ium and its alloys 3			
Ј8	Tensile properties measurement for Ti-6Al-4V ELI forging at high pressure hydrogen environments by internal gas atmosphere apecimen method	S. Kumagai		456
J9	Effect of heat treatment on mechnical properties of $\alpha+\beta$ type Ti-4V-0.6O alloy	M. Omiya		457
J10	Effect of solution treatment conditions on microstructure and mechanical properties of Ti-6242S alloy	S. Gangolu		458
Titan	ium and its alloys 4			
J11	Deformation behavior of α " martenisite in a Ti-7.5 Mo alloy	X. Ji		459
J12	Relationship between microstructure and mechanical properties of forged Ti17 subjected to various solution and aging treatments	M. Ninomi		460
J13	Effect of thermal history on material property of quenched martensite structure in Ti-Nb alloys	Y. Mantani		461
J14	TEM study on micro-structure of two-step aged Ti-15-3 alloys	E. Sukedai		462
Ultra	fine grained materials -fundamental aspects for ultrafine grained structures- 1			
J15	Correlation between martensitic transformation and local lattice strains around alloying elements in Ti- and Fe-based alloys	M. Morinaga		463
J16	Influence of Fe addition on microstructure and mechanical property in pure titanium processed by high pressure torsion and subsequent annealing	G. Deng		464
J17	Deformation behavior of ultra-fine grained CP-Ti fabricated by multi-directional forging at cryogenic temperature	C. Watanabe		465
J18	Mechanical properties and deformation mechanisms of fine-grained and ultrafine-grained Ti-6Al-4V with equiaxed and bimodal microstructures	Y. Chong		466
Ultra	fine grained materials -fundamental aspects for ultrafine grained structures- 2			
J19	Harmonic Structure Design via Electrode-less Nickel Plating	M. Ota		467
J20	Microstructure and mechanical properties of thermomechanical treated SUS304L harmonic structure materials	M. Nakatani		468
J21	Change in mechanical and electrical resistivity of Cu-1.6mass%Fe alloy during ARB praocess	Y. Miyajima		469