The timetable of the 180th ISIJ Online Meeting (September 16-18, 2020)

	C+ 16	(W- 4)	Comb 1	7 (Th)	S+ 1	0 (F.:)
Session Room	Sept. 16 AM	(Wed.)	Sept. 1	/ (Thu.)	Sept. 1	8 (Fri.)
Session Room 1	Technology of cokemaking / Fundamentals of ironmaking [1-8] (9:00-12:00)	Behavior of iron ore in blast furnace / Phenomena in lower part of blast furnace [13-21] (13:00-16:20)	Processes of iron ore treatment and resolving environme	tor increasing resource flexibility ntal problem in the future 9:00–16:15)	Sintering [37-42] (9:40-11:40)	Young engineer session of ironmaking / Young engineer session of cokemaking [48–56] (13:00–16:20)
Session Room 2	Thermodynamics [9–12] (10:20–11:40)	Hot metal treatment and converter / Secondary refining and refractory / Continuous casting and solidification [22-30] (13:00-16:40)	Solidification and structure control 1 · 2 [31–36] (9:20–11:40)		Electromagnetic processing of materials [43–47] (10:00–11:40)	Introduction of research topics in novel processing forum / Slag and dust treatment 1 · 2 [57-66] (13:00-17:00)
Session Room 3	Cutting-edge of green energy technologies contributing sustainable progress in the iron & steel industry [67–71] (9:00–10:40)	Energy–saving and CO ₂ emission reduction [72–74] (13:00–14:00)	Present maintenance situa [D11-D21]	tion of aging infrastructures (9:20-15:30)		
Session Room 4	Recent trends on systems resilience to realize both maximum efficiency and operational stability [D22-D26] (9:00-12:15)	System and control [75–77] (13:00–14:00)	Human-system shared control realizing high efficient and stable rolling [D27-D30] (9:30-12:00)	Steel plant equipment diagnosis using area sensing technology / Instrumentation [78-85] (13:00-16:10)		
Session Room 5			Reliability evaluation of steel weld 2 -1 · 2 [86-91] (9:40-12:00)	Cooling and lubrication / Oxide scale / Constitutive equations [92-101] (13:00-17:00)	Young engineer's latest researches on tubes and pipes 3 -1 -2 [102-107] (9:40-12:00)	Ductile fracture: Mechanisms, origin, effects & control [D31-D35] (13:00-15:50)
Session Room 6	Heterogeneous deformation [D36-D45] (Electrical steel [149-152] (10:00-11:20)	Strength and deformation behavior 1 • 2 [164–172] (13:00–16:30)	Hydrogen embrittlement 1 • 2 [181-189] (9:00-12:20)	Hydrogen embrittlement 3 • 4 [190-197] (13:20-16:20)
Session Room 7	Surface technology [108-109] (10:00-10:40)	Heat resistant steels / Heat resistant alloys [123-129] (13:00-15:50)	Toughness, Ductility, Fatigue property [137–140] (10:40–12:00)	Machine structural steel [153-155] (13:00-14:00)		
Session Room 8	Steel informatics 1 • 2 [110-116] (9:00-11:40)	Steel informatics 3 • 4 [130-136] (13:00-15:40)	Aging and Precipitation / Diffusional phase transformation 1 [141-148] (9:00-12:00)	Diffusional phase transformation 2 · 3 [156-163] (13:00-16:00)	Recovery and recrystallization / Modelling and simulation [173–180] (9:00–12:00)	
Session Room 9	Stainless steel [117-122] (10:00-12:00)			Elemental analysis Precipitate and inclusion analysis / Crystal structure analysis On-site and on-line analysis [198-204] (13:30-16:10)		Advanced monitoring and analysis methods for industrial processes [Int1-Int6] (14:00-17:20)
Session Room 10				ISIJ and JIM joint session Titanium and its alloys 1 • 2 • 3 [J1-J10] (13:00-17:00)		
JIM Room O					ISIJ and JIM joint session Ultrafine grained materials – fundamental aspects for ultrafine grained structures- 1 • 2 [J11-16] (9:00-11:20)	
JIM Room Q			Materials science of martensitic a application	joint session nd bainitic transformations and its ns 1·2·3·4 9:00-16:20)	ISIJ and JIM joint session Materials science of martensitic and bainitic transformations and its applications 5 [J34-38] (9:00-10:40)	
Symposium Room 1		Micro-analysis of corrosion phenomena on stainless steels (13:00-16:00) [Charge-free]		Quantitative analysis of macro- and micro-segregation and defect during solidification (13:00-16:25) [Charge-free]		Developing an LCA methodology with due consideration of Life- Cycle Value of Steel (13:00-17:00) [Charge-free]
Symposium Room 2		Advances in property characterization based on microstructural analysis using quantum beam (13:00–16:55) [Charge-free]		Accurate constitutive model for steel sheets and its application on tension leveling simulation (13:00-16:40) [Charge-free]	Recent measurement technology and its challenge of microstructure formation, property determination, quality assurance and process control of materials (09:00-12:00) [Charge-free]	
Symposium Room 3		Final symposium of the research group of new functionalities of iron and steelmaking slags by biofilm coating (13:00-16:30) [Charge-free]			Investigation of metal corro ∼material engineering physicochen approa	sion in various environments nical·electrochemical·microbiological ches~ [Charge-free]

 ^{[]:} Lecture Number
 (): Lecture Time
 : Those sessions will be hold using Zoom meeting.

* : Abstracts from the previous 179th ISIJ Meeting

Discussion Sessions

High Temperature Processes

Lecture No. Discussion Session Title	Charles	De	
Processes of iron ore treatment for increasing resource flexibility and resolving	Speaker		age
9:00-9:20	-	i di di c	
D1 Sintering process for increasing resource flexibility and resolving environmental p 9:20-9:55	oroblems T. Murakami		1*
D2 Effect of particle size of fine Hematite on characteristics and strength of quasi-part	ticle T. Maeda		3*
9:55-10:30 D3 Numerical simulation of granulation of fine iron ore particles	H. Nakamura		5*
10:40-11:15 D4 Influence of oxygen concentration and particle size on the combustion rate of coke	and biomass char A. Nakamura		8*
 11:15-11:50 D5 Acceleration of oxidation of iron bearing materials together with carbonaceous main sintering process 	terials Y. Konno		10*
13:10-13:45 D6 Analysis of the change of packed bed structure due to melt transfer between differen	t types of granules S. Ishihara		12*
13:45-14:20 D7 Effect of iron ore type and gangue components on strength and texture of fine pow			14*
14:30-14:55 D8 Effect of coarse pellet mixing ratio at bottom layer an sintering properties (Secreta research group of sitering technology harmonized with iron resource and environments).			16*
 14:55-15:20 D9 Mixed charging effect of green pellet and bonding agent to bottom layer on sinterin (Secretary studies in research group of sintering technology harmonized with iron environment-2) 			18*
 15:20-15:45 D10 Elongation effect of high temperature zone in sintering bed at coexistence of biomacoke fine (Secretary studies in research group of sintering technology harmonated resourse and environment-3) 			20*
Sustainable Systems			
Present maintenance situation of aging infrastructures			
9:30-9:50 D11 Monitoring of the corrosion environment in the winter season	K. Azumi		401
9:50-10:10	WOLT		105
D12 Corrosion monitoring on simulated bridges using various atmospheric corrosion set 10:10-10:30	ensors W. Oshikawa	• • •	405
D13 Atmospheric corrosion monitoring in model structure for girder end of steel bridge	H. Katayama	• • •	406
10:50-11:10 D14 Simulation of atmospheric corrosion using mathematical model	T. Igarashi		407
11:10-11:30 D15 Numerical and experimental evaluation of corrosion rate of steel under a water dro	oplet E. Tada	• • •	409
11:30-11:50D16 Growth of solution layer due to deliquescence of NaCl particles and initial oxidation of steel surfaces	on behavior K. Fushimi		410
13:00-13:20 D17 Micro-electrochemistry of carbon steels in localized corrosion environments for modeling	nathematical M. Nishimoto		411
13:20-13:40 D18 Weight gain rates of steels corroding for repeating dry and wet with controlled hur	nidity T. Haruna		412
13:40-14:00 D10 (ISU Passarah Promotion Grant) 2D Observation of nit formed on iron and steel u	ndor		
D19 (ISIJ Research Promotion Grant) 3D-Observation of pit formed on iron and steel u dry-wet cycling condition	M. Chiba		413

i rogiam or and roo hold modaling (coptomisor to ro,	_0_0,		
14:20-14:40 D20 Evaluation of dissolved oxygen concentration and corrosion behavior in electrolyte film on rusted steels	H. Tsuchiya		415
14:40-15:00 D21 Changes in electrochemical behavior of steels with metal cations in NaCl solutions	M. Sakairi		416
Instrumentation, Control and System Engineering			
Recent trends on systems resilience to realize both maximum efficiency and operational stabili 9:00-9:30	ty		
D22 Prospects for research group on systems resilience to realize both maximum efficiency and operational stability	N. Fujii		418
9:30-10:00 D23 Symbiosis with variabilities by systemic approaches: resilience in the post-coronavirus era 10:00-10:30	T. Sawaragi		421
D24 A system of systems model for revealing resilience mechanism of production-logistics systems	H. Mizuyama		425
10:45-11:15 D25 Experimental study on the resilient performance to deal with unexpected situations	M. Takahashi		427
11:15-11:45 D26 Expectations for the research project on resilient operations under aggressive environment	H. Narazaki		430
Instrumentation, Control and System Engineering / Processing for Qua	ality Products	;	
Human-system shared control realizing high efficient and stable rolling			
9:40-10:10 D27 Elementary analysis of rolling slip in cold strip rolling	J. Yanagimoto		432
10:10-10:40 D28 Rolling theory using relative-velocity dependent friction law for machine learning	H. Utsunomiya		433
10:40-11:10 D29 Data-driven approach to thickness control of cold tandem rolling mill - Examination used simulator -	O. Kaneko		435
11:10-11:40 D30 Ecological interface design for shared control of tandem mills	Y. Horiguchi		438
Processing for Quality Products			
Ductile fracture: Mechanisms, origin, effects & control			
13:00-13:30 D31 Identification of flow stress and ductile fracture parameters with tensile test using image analysis and optimization technology	Y. Yoshida		22*
13:30-14:00 D32 Ductile fracture prediction in sheet and bulk metal forming processes by an ellipsoidal void model	K. Komori		26*
14:00-14:30 D33 Prediction of ductile fracture for steel considering stress triaxiality and multi-axis stress state	N. Yukawa		28*
14:40-15:10 D34 Study on evaluation of surface crack in hot forging	H. Kakimoto		30*
15:10-15:40 D35 Effect of rolling condition on ductile fracture at center of billet in piercing rolling	T. Katsumura		34*
Microstructure and Properties of Materials			
Heterogeneous deformation and work hardening in steels 9:05-9:35			
D36 Discussion on the upper yielding mechanism based on the pile-up theory in polycrystalline ferritic steels	T. Tsuchiyama		442
 9:35-10:05 D37 Evaluation of pinning force of edge dislocation by nitrogen atoms in BCC iron by molecular dynamics method 	S. Oiwane		445
10:05-10:35 D38 Evaluation of mobile dislocations in 18%Ni martensitic steel by stress relaxation test	Y. Takenouchi		446

 10:50-11:20 D39 Phenomenological model for deformation inhomogeneity in tensile test and prediction of strain-stress response 	T. Morikawa	 447
11:20-11:50		
D40 Crystal plasticity analysis of non-uniform plastic deformation behavior in core-shell structured dispersion strengthened alloy	Y. Okuyama	 449
13:00-13:30		
D41 Effect of carbon content on selection of slip system during tensile deformation of lath martensite	S. Nambu	 453
13:30-14:00		
D42 Strain distribution and deformation-induced martensitic transformation in tension for a TRIP steel plate	N. Koga	 456
14:00-14:30		
D43 (ISIJ Research Promotion Grant) Strategy for analyzing plasticity heterogeneity in medium Mn steels	M. Koyama	 460
14:45-15:15		
D44 Austenite reversion during intercritical annealing of Mn-added steels	G. Miyamoto	 461
15:15-15:45		
D45 Deformation behavior of medium manganese steels by neutron diffraction	S. Morooka	 462

International Organized Sessions

Process Evaluation and Material Characterization 2020/9/18 Room 9

Advanced monitoring and analysis methods for industrial processes Session Organizers: Y. Deguchi [Tokushima Univ.], S. Kashiwakura [Ritsumeikan Univ.] 14:00-14:05 Opening Address: Y. Deguchi [Tokushima Univ.] Chair: Y. Deguchi [Tokushima Univ.] 14:05-14:35 Int.-1 Mutual classification of stainless steels by laser-induced breakdown spectroscopy together with ensemble machine learning Ritsumeikan Univ. OS. Kashiwakura · E. Yamasue 466 14:35-15:05 Int.-2 Development of 2D/3D temperature imaging technology for iron and steel making processes using CT-TDLAS Tokushima Univ. OT. Kamimoto · Y. Deguchi 467 15:05-15:35 Int.-3 (Invited Lecture) Long-short double pulse laser-induced breakdown spectroscopy for carbon detection in steel samples Northwestern Polytechnical Univ. OM. Cui, Tokushima Univ. Y. Deguchi, Xi'an Jiaotong Univ. Z. Zhenzhen, Northwestern Polytechnical Univ. C. Yao · D. Zhang 469 Chair: S. Kashiwakura [Ritsumeikan Univ.] 15:45-16:15 Int.-4 (Invited Lecture) Focus point effect on underwater measurement of solid samples using long-short DP-LIBS Xi'an Jiaotong Univ. OZ. Wang · K. Rong, Northwestern Polytechnical Univ. M. Cui, Xi'an Jiaotong Univ. J. Yan, Tokushima Univ. Y. Deguchi 471 16:15-16:45 Int.-5 Development of real-time elemental monitoring method in iron and steel making processes using long and short double-pulse laser-induced breakdown spectroscopy Tokushima Univ. OY. Deguchi 473

476

Int.-6 (Invited Lecture) Detection of carbon in steel using laser-induced breakdown spectroscopy (LIBS)

Central European Institute of Tech. OJ. Kaiser · P. Porizka · D. Prochazka

Closing Address: S. Kashiwakura [Ritsumeikan Univ.]

17:15-17:20

High Temperature Processes

High Temperature Processes			
Lecture No. Plenary Session Title	Speaker	Pa	age
Technology of cokemaking			
1 Numerical investigation of the factors affecting the filling ratio of the briquette of coa	l Y. Ono	• • • 10	108*
2 Measures for reducing moisture contained in wet quenching of coke	K. Kawai	• • • •	477
3 Stabilization of coke oven dry main pressure	S. Agawa	• • • •	478
4 Rebuild of Muroran No.5 coke oven west battery (Pad-up rebuild of Muroran No.5 cokes west battery)	ke oven K. Tanaka	• • • .	479
Fundamentals of ironmaking			
5 Developing dephosphorization technique for iron ore with reduction process	O. Ishiyama	• • • 2	480
6 Fundamental investigation of urea as reducing agent in ironmaking on a low-grade or	e A. Kurniawan	• • • •	481
7 Effect of basicity of slag on the carburization and melting behavior of iron oxide-carb	on composite R. Higashi	• • • 2	482
8 Development of adiabatic counter current moving bed for shaft furnace reaction simu	lator M. Mizutani	• • • 2	483
Thermodynamics			
9 (ISIJ Research Promotion Grant) Effects of FeO additions on sulfide capacities of CaC		• • • ′	77*
10 Reevaluation of iso-activity curves for Fe _x O in Fe _x O-CaO-SiO ₂ ternary system at 1573	3K K. Saito	• • • 2	484
11 Determination of the activity coefficient of Ni in the molten Ag-Cu system	J. Li	• • • 2	485
12 Interaction parameters between Sn and Mo, B and Ni in molten Fe-18mass%Cr alloy	K. Hori	• • • 2	486
Behavior of iron ore in blast furnace			
13 3-Dimensional analysis of reduction behavior of iron ore particle	J. Kim	• • • 2	487
14 Estimation of shrinking behavior of pellet during softening process	N. Yasuda	• • • 2	488
15 Effect of metallic iron structure in pre-reduced pellet on high temperature softening b	pehavior I. Miyama	• • • 2	489
16 Effect of lump ore different on slag formation due to reaction with lime stone	T. Handa	• • • 2	490
Phenomena in lower part of blast furnace			
17 Prediction of pulverized coal combustibility by chemi-luminescence spectrometry	K. Moriya	• • • •	491
18 Prediction method of hot temperature in blast furnace	K. Kamo	9	90*
19 3-dimensional coke degradation recognition system by using deep learning	S. Natsui	• • • 2	492
20 Estimation of coke degradation behavior in blast furnace by discrete element method	T. Iwanaga	• • • /	493
21 Effect of gas velocity distribution in void of coke bed on pressure drop	A. Hirai	• • • 2	494
Hot metal treatment and converter			
22 (ISIJ Research Promotion Grant) Effect of stirring method and impeller design on dyr			
deformation of free surface during mechanical stirring	T. Yamamoto		495
23 Effect of moving object submerged near bath surface on fluid motion	Y. Higuchi		496
24 Dynamic control of top blowing gas jet velocity by applying actuation gas I	N. Oda		24*
25 Dynamic control of top blowing gas jet velocity by applying actuation gas II	Y. Murakami	• • • 12	125*
Secondary refining and refractory			
26 Conditions of MgO and MgO • Al ₂ O ₃ inclusions formation in high chromium steel at 1	1873 K K. Okumoto	• • • 2	497
27 Improvement in refractory around of bottom tuyere Q-BOP furnace	Y. Takashita	• • • 2	498
Continuous casting and solidification			
28 The effect of alloy element on the macro segregation behavior in modified sato-mold in	-	• • • 2	499
29 Experimental verification of effect of carbon content on unevenness of initial solidific	eation K. Yamamoto	• • • 1	135*
30 Effect of C contents on directional solidification of high Si-Mn steel	T. Takayama	• • • •	500
Solidification and structure control 1			
31 4D-CT measurement of volume and lattice constant change in Fe-C alloy	T. Suga	• • • 13	39*
32 Change in the volume of Fe-0.05C steel during solidification by using time-resolved to		• • •	501
33 Effect of application of electric current on solidification morphology	Y. Totogawa	• • • •	502

Solidi	fication and structure control 2		
	3D analysis of macrosegregation in Al-Cu ingot by Sato mold with the use of X-ray tomography	T. Yoshimura	 147*
35	Crystallographic orientation relationship between fine gamma grain after the massive-like transformation in Fe-18Cr-Ni alloy	T. Narumi	 140*
36	Simulations of microstructural evolution with high-frequency gamma-nucleation around peritectic temperature of Fe-C alloys	J. Ogawa	 146*
Sinter	ring		
37	Estimation model of limestone and coke segregation in sintering bed	K. Hara	 503
38	Sintering machine charging test of carbon-core green pellet	K. Iwase	 504
39	Effect of limestone addition on the pore formation during composite sintering with green pellet	Y. Takahama	 505
40	Effect of quicklime replacement rate on the strength of sintered pellets prepared by the composite sintering process	Z. Ma	 506
41	Suppression of secondary hematite formation during cooling under low oxygen partial pressure	Y. Iwami	 507
42	Gas permeability measurement of iron ore sinters	D. Tahara	 508
Floot	romagnetic processing of materials		
	Impedance measurement for analysis of induction heating and stirring of non-metallic molten liquid	N. Yoshikawa	 82*
	Effect of magnetic field gradient on liquid metal flow in packed bed	G. Kusunoki	 509
	Evaluation of liquid velocity near solid-liquid interface under the superimposition of DC current	G. Kusunoki	307
73	and magnetic field with or without AC current	G. Xu	 510
46	Effect of stationary Lorentz force on the movement of an insulating particle between different phases	T. Kozuka	 83*
47	Effect of current imposing region on grain refinement region of alloy solidified under		
	superimposition of static magnetic field and current	Y. Nishi	 511
Youn	g engineer session of ironmaking		
	Influence of temperature profile on pore structure of sinter	S. Yamada	 95*
49	Improvement of assimilation and sinter productivity by using granulation with inclined mixing of lime (Development of granulation with inclined mixing of lime - 1)	M. Taniguchi	 512
50	Assimilation behavior of pseudo-particles between powder layers with different limestone content (Development of granulation with inclined mixing of lime - 2)	S. Yamazaki	 513
51	Influence of pre-reduction temperature on reduction behavior of pellets	S. Yamaki	 514
52	Heat flow ratio control technology at upper part of oxygen blast furnace for CO ₂ emission reduction	Y. Morita	 179*
Voun	g engineer session of cokemaking		
	Development of controlling method for bulk density using surfactants	Y. Oyama	 515
	Effect of temperature gradient on crack formation at high contraction vitrinite in coke	S. Konno	 102*
	Coke oven combustion control by measuring gas flow rate in combustion flue	Y. Morita	 516
	Establishment of extensive repair method in Oita DOC	A. Shiga	 517
		71. Siligu	317
	duction of research topics in novel processing forum		
	Change of droplet shape by ultrasonic vibration	Y. Tanaka	 110*
	Effect of ultrasonic power on the nucleation under flow suppression condition	N. Tabayashi	 518
	Pore distribution and water percolation in porous transpiration-cooling devices with controlled porous structure	S. Nishino	 519
60	Introduction to the study group of containerless materials processing -Synthesis of novel white phosphor in La-W-O system-	J. Fukushima	 112*
Slag a	and dust treatment 1		
_	Effect of mineral containing slag on expansion behavior of steelmaking slag	T. Sasaki	 520
62	Behavior of pH during dissolution of electric furnace oxidation slag irradiated with germicidal lamp into pure water	S. Yokoyama	 521
63	Relationship between silicate skeleton structure and dissolution kinetics of calcium-silicate mineral phases into water	F. Ruan	 522
Slag	and dust treatment 2		
_	Impact assessment on modified CBR in property of slug	K. Miyazaki	 523
	(ISIJ Research Promotion Grant) Estimation of electrical pulse disintegration behavior of steel	, was	3-3
	co-products by electric field analysis	H. Kubo	 524
66	Cr removal from stainless slag by electrical pulse disintegration	H. Kubo	 525

Sustainable Systems

Lecture No. Plenary Session Title	Speaker	Page
	-	r ago
Cutting-edge of green energy technologies contributing sustainable progress in the iron & st 67 Hydrogen generation behavior by cyclic oxidation/reduction of porous iron powder	N. Fukushi	• • • 178*
68 Thermodynamic analysis of effect of scrap ratio on slag-metal reaction at the bottom of blast furnace		1/8
and PSR furnace	K. Kato	• • • 526
69 Kinetic analysis considering particle size distribution on Ca elution from slags I	Y. Kashiwaya	• • • 527
70 Kinetic analysis considering particle size distribution on Ca elution from slags II	Y. Kashiwaya	• • • 528
71 Micro-encapsulation of Al-Cu-Si ternary system phase change material for high-temperature applications	T. Kawaguchi	529
	1. Kawaguem	32)
Energy-saving and CO ₂ emission reduction		
72 Fabrication of Ba ₈ Cu _x Si _{46-x} power generation material using thin film process	T. Nishijima	• • • 530
73 Extraction of calcium from steelmaking slag with glycol solvent and fixation of carbon dioxide	T. Sasaki	• • • 531
74 Leaching of calcium from steel converter slag in acetic acid	E. Kusaka	• • • 532
Instrumentation, Control and System Engineering		
Lecture No.	Charles	Dogo
Plenary Session Title	Speaker	Page
System and control		
75 (ISIJ Research Promotion Grant) Anomaly detection for metal material using principal component analysis and machine learning	S. Mitsui	• • • 533
76 Operation support system for kanbara reactor desulfurization	J. Mori	• • • 534
77 Development of hot-rolling crown and shape set-up with data modeling technology	A. Morita	• • • 191*
Steel plant equipment diagnosis using area sensing technology		
78 Steel plant equipment diagnosis using area sensing technology	I. Ishii	• • • 535
79 Rotation monitoring for wide-area conveyors using panoramic vibration imaging	K. Shimasaki	• • • 536
80 Small vibration measurement of support pillar of conveyer belt using sampling moire camera	M. Fujigaki	• • • 537
81 3D FEM vibration and deformation analysis based on measured 3D measurement data of steel		
mill belt conveyor	A. Koga	• • • 538
Instrumentation		
82 Real-time measurement technique for powder rate of coke	T. Tsuboi	• • • 539
83 Development of the area measurement method of a solid iron (mushroom) on the tuyeres at the bottom of the converter	T. Ito	• • • 540
84 Poisson un-scarfing segmentation in hot scarfing process	Y. Konno	• • • 541
85 Profile measurement at pipe-end for pipeline using optical fiber laser rangefinder	S. Oshima	• • • 542
Processing for Quality Products Lecture No.		
Plenary Session Title	Speaker	Page
Reliability evaluation of steel weld 2 -1		
86 Numerical simulation of molten metal behavior during buried arc welding using incompressible smoothed particle hydrodynamics method	H. Komen	• • • 543
87 Investigation of light emitting mechanism near electrode for prediction of tungsten electrode consumption	K. Tanaka	• • • 544
Numerical simulation of droplet transfer with flux column during flux cored arc welding by 3-dimentional SPH method	R. Ueno	• • • 545
Reliability evaluation of steel weld 2 -2		
89 Effect of friction stir processing on residuam stress, microstructure and properties of fusion welded 304 austenitic stainless steel	Y. Sato	• • • 546
90 Effect of laser peening plus annealing on grain boundary character distribution and intergranular corrosion resistance of austenitic stainless steel	S. Tokita	• • • 547
91 Effect of C and P on high P weathering steel developed for FSW	T. Kawakubo	• • • 548

Cooling and lubrication		
92 Design of 2degree of freedom control system based on cooling characteristics model of fine valve for run out table of hot strip mill	R. Saito	549
93 Development of simulator of hearth roll-pickup in strip annealing line	S. Morishige	• • • 206*
94 Estimation of surface topology based on rolling pressure distribution	Y. Okada	• • • 550
Oxide scale		
95 Improvement of descalability by adding SiO ₂ on steel	A. Harashima	• • • 207*
96 Effects on remaining oxide of joining conditions in induction heating joining	T. Okazaki	551
97 Instability of cutting characteristics in carbon steel with scale	M. Okada	• • • 552
Constitutive equations 98 Development of in-plane biaxial reverse loading test method	K. Kawasaki	• • • 194*
99 Effect of hydrostatic stress on tension-compression asymmetry of mild steel sheet	Y. Takada	195*
100 Influence of holding strain and unloading on elongation in tensile testing of cold-rolled steel sheets		196*
101 Effects of sudden strain rate change on the microstructural evolution in superalloy 718	Y. Liu	553
	1. 2.0	
Young engineer's latest researches on tubes and pipes 3 -1	** ** * **	
102 Deformation property of eccentric pipe in rotary draw bending process	K. Nakajima	• • • 554
103 Comparison of deformation behavior between aluminum tubes with different manufacturing processes in partial one-sided rubber bulging test	K. Nakahara	• • • 555
104 Effect of bulging length on hydroformed tubing for providing tubes with thickness distribution	A. Shirayori	• • • 556
Young engineer's latest researches on tubes and pipes 3 -2		
105 Development of local thickening forming method for metal tube and compression-torsion		
testing machine	K. Minemura	• • • 557
106 Study of partial welding for steel pipe by using cylindrical explosive welding method	A. Mori	• • • 558
107 Proposal of creep life evaluation method for serviced Mod. 9Cr-1Mo steel considering hardness value	es T. Nakamura	• • • 559
Microstructure and Properties of Materials		
Microstructure and Properties of Materials Lecture No. Plenary Session Title	Speaker	Page
Lecture No. Plenary Session Title	Speaker	Page
Lecture No.	Speaker M. Yoshida	Page
Lecture No. Plenary Session Title Surface technology		-
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet		-
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on	M. Yoshida	• • • 560
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine	M. Yoshida M. Chiba	560
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11)	M. Yoshida M. Chiba Y. Adachi	· · · 560 · · · 561 · · · 562
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12)	M. Yoshida M. Chiba	· · · 560 · · · 561 · · · 562
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11)	M. Yoshida M. Chiba Y. Adachi	· · · 560 · · · 561 · · · 562
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking	M. Yoshida M. Chiba Y. Adachi Y. Adachi	· · · 560 · · · 561 · · · 562 · · · 563
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14)	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya	560 561 562 563
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14)	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu	560 561 562 563
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15)	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya	560 561 562 563 564 565
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and t-distributed stochastic neighbor embedding (Steel informatics 16)	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu	560 561 562 563 564 565
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu K. Kiyomura	560 561 562 563 564 565
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and t-distributed stochastic neighbor embedding (Steel informatics 16)	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu K. Kiyomura Z. Wang	560 561 562 563 564 566 567
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and t-distributed stochastic neighbor embedding (Steel informatics 16) 116 Topology optimization of virtual complex microstructure by FEM (Steel informatics 17)	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu K. Kiyomura Z. Wang	560 561 562 563 564 566 566
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and t-distributed stochastic neighbor embedding (Steel informatics 16) 116 Topology optimization of virtual complex microstructure by FEM (Steel informatics 17) Stainless steel 117 Influence of precipitates on mechanical properties of precipitation hardening stainless steels 118 (ISIJ Research Promotion Grant) Formation of Fe-Al intermetallic compound layer by AIH-FPP	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu K. Kiyomura Z. Wang R. Maeda N. Takahashi	560 561 562 563 564 565 566 567 568 225*
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics II) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and t-distributed stochastic neighbor embedding (Steel informatics 16) 116 Topology optimization of virtual complex microstructure by FEM (Steel informatics 17) Stainless steel 117 Influence of precipitates on mechanical properties of precipitation hardening stainless steels 118 (ISIJ Research Promotion Grant) Formation of Fe-Al intermetallic compound layer by AIH-FPP treatment and its effect on wear resistance of stainless steel	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu K. Kiyomura Z. Wang R. Maeda N. Takahashi S. Takesue	
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics 11) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and t-distributed stochastic neighbor embedding (Steel informatics 16) 116 Topology optimization of virtual complex microstructure by FEM (Steel informatics 17) Stainless steel 117 Influence of precipitates on mechanical properties of precipitation hardening stainless steels 118 (ISIJ Research Promotion Grant) Formation of Fe-Al intermetallic compound layer by AIH-FPP treatment and its effect on wear resistance of stainless steel	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu K. Kiyomura Z. Wang R. Maeda N. Takahashi	560 561 562 563 564 565 566 567 568 225*
Lecture No. Plenary Session Title Surface technology 108 Effect of coating structure on formability of 55%Al-Zn coated steel sheet 109 (ISIJ Research Promotion Grant) Advanced surface layer with scratch-shielding property on Fe anodized Steel informatics 1 110 Development of innovative quantitative analysis method for microstructure using machine learning-based image processing and advanced mathematics (Steel informatics II) 111 High accuracy segmentation for microstructure by deep learning U-Net (Steel informatics 12) 112 In-situ observation of microstructural evolution using Mask R-CNN for development of tracking microscope (Steel informatics 13) 113 Detection of the origin of brittle fracture by computer vision (Steel informatics 14) Steel informatics 2 114 Quantitative analysis of microstructural images using persistent homology (Steel informatics 15) 115 Machine-learning-based microstructural optimization using persistent homology analysis and t-distributed stochastic neighbor embedding (Steel informatics 16) 116 Topology optimization of virtual complex microstructure by FEM (Steel informatics 17) Stainless steel 117 Influence of precipitates on mechanical properties of precipitation hardening stainless steels 118 (ISIJ Research Promotion Grant) Formation of Fe-Al intermetallic compound layer by AIH-FPP treatment and its effect on wear resistance of stainless steel	M. Yoshida M. Chiba Y. Adachi Y. Adachi K. Enya M. Muramatsu K. Kiyomura Z. Wang R. Maeda N. Takahashi S. Takesue	560 561 562 563 564 565 566 567 568 225* 569

	Microstructure and welding properties of new SUS329J1 steel (The development of a SUS329J1 steel exhibiting good welding properties -1)	Y. Oikawa	• • • 227*
122	Corrosion resistance of a new SUS329J1 steel in chloride solution (The development of a SUS329J1 steel exhibiting good welding properties-2)	N. Okada	• • • 228*
Hoot	resistant steels		
		N. Otaki	570
	Grain boundary segregatio of Nb and B in low-C austenitic steels		2,0
	Effect of aeing during creep tests on rupture behavior of KA-SUS304J1HTB steel	H. Tezuka	• • • 571
125	Life evaluation and failure mechanism under creep-fatigue of mod. 9Cr-1Mo steel	Y. Nakayama	• • • 572
126	Boron behavior in advanced 9%Cr ferritic heat resistant steel under tempering	T. Osanai	• • • 573
Heat	resistant alloys		
127	Flow stress modeling of Alloy 720Li using internal state variables model	J. Nakamura	• • • 574
128	Phase equilibria among γ/α -W/oP6 in Ni-30(Cr,Mo,W) alloys	R. Nagashima	• • • 575
	Change in crystal structure of Fe-Cr binary σ phase (tP30) with Si in solution	E. Maeda	• • • 576
Stool :	informatics 3		
130	Comparison of stress-strain curves of dual phase steel by micromechanics and FEM (Steel informatics 18)	K. Yamamoto	• • • 577
131	Quantitative analysis of dislocation structure in SUS310 steel using XRD/EBSD/TEM		
	(Steel informatics 19)	K. Yamamoto	• • • 578
132	Hybrid analysis of deformation behavior in SUS310 stainless steel using DIC/FEM	37 17 :	570
	(Steel informatics 20)	Y. Kai	• • • 579
133	Quantitative analysis of dislocation structure in recovery process of pure iron (Steel informatics 21)	S. Sugiyama	• • • 580
Steel i	informatics 4		
134	Evaluation of ferrite recrystallization behavior in low-carbon steel using three-dimensional microstructure observation (Steel informatics 22)	K. Horiuchi	• • • 581
135	Evaluation of ferrite recrystallization behavior in low-carbon steel using X-ray diffraction line	T. O.	502
126	profile analysis (Steel informatics 23) Analysis of three dimensional structure and formation mechanism of degenerate negatite in	T. Ogawa	• • • 582
130	Analysis of three-dimensional structure and formation mechanism of degenerate pearlite in eutectoid steel (Steel informatics 24)	T. Ogawa	• • • 583
Tough	ness, Ductility, Fatigue property		
137	Brittle-to-ductile transition of low carbon martensite/bainite steels	T. Sakamaki	• • • 584
138	Toughness and fracture behavior of thermo-mechanical control processed medium Mn	T. Maeda	• • • 281*
420	martensitic steel	1. Maeda	• • • 281*
139	Effect of annealing temperature on formation of microstructure and mechanical properties of low alloy TRIP steels	H. Hasegawa	• • • 585
140		T. Kita	• • • 284*
	Effects of tempering temperature on the fatigue strengths and microstructures of carburized steel	1. Kita	204
	and Precipitation		
141	Hardness change and precipitation behavior in 785 MPa grade steel for reinforcing bar	H. Chinen	• • • 586
142	Behavior of BN precipitation in hot rolled austenite steel	D. Terazawa	• • • 234*
143	Strengthening mechanism by Ti-N nano clusters in Fe-Ti-N alloys	K. Itasaka	• • • 587
144	(ISIJ Research Promotion Grant) The formation of stacking fault tetrahedra and voids	V. Volenochi	588
	in FeCrNi alloy	K. Yabuuchi	• • • 588
	sional phase transformation 1		
145	Microstructure design using the eutectoid type reaction path of δ -Fe \rightarrow γ -Fe+Fe ₂ Ta ternary system	Z. Yuan	• • • 589
146	Dynamic transformation of Fe-Ni alloy during isothermal compression in the ferrite + austenite two-phase region	L. Li	• • • 252*
147			
	Relationship between austenite grain size and stress dependence of isothermal diffusional	р п	500
2	transformation	R. Ueji	• • • 590
148		R. Ueji T. Mizutani	· · · 590 · · · 591
	transformation	-	
Electi	transformation Phase-field simulation of elastic energy relaxation during pearlite transformation in steel	-	

	Relationship between cold-rolling reduction and recrystallization texture in {110}<110> psudo-single crystal of 3% silicon steel part 2	T. Murakawa	 592
151	Effect of radius and effective range of precipitates on grain growth simulation in local curvature multi-vertex model	S. Morimoto	 593
152	Plastic deformation behavior analysis of Fe-Si alloys using microcanti levers	K. Ikegami	 594
Mach	ine structural steel		
	Pearlite spheroidization behavior of high carbon steel sheet during annealing	K. Nakaya	 595
154	Effect of alloying elements on nitriding behavior in austenite -2nd report-	K. Tsujii	 596
155	Microstructural changes of cross section beneath contact surface on rolling and sliding contact fatigue	T. Fuchigami	 597
Diffus	sional phase transformation 2		
	Effects of C, Mo addition on the grain boundary segregation of P in ferrite	Y. Zhang	 232*
157	Behavior of segregation to austenite grain boundaries in Mo and B added steels - Influence of Mo combined addition -	J. Takahashi	 598
158	Segregation and local partitioning of Mn at migrating ferrite / austenite interface	G. Miyamoto	 253*
	Effects of Nb interface segregation on ferrite transformation kinetics in low carbon steels	H. Dong	233*
137	Effects of 140 interface segregation on ferrite transformation kineties in low earloan steels	II. Doing	233
	sional phase transformation 3		
160	Effect of precipitates on austenite formation behavior during reverse transformation in Cr-C steels	N. Ooura	 599
161	Stability of retained austenite formed by dissolution of alloy carbide	G. Hanaoka	 600
	Microstructure evolution during thermomechanical processing in medium-Mn steel	T. Kayama	 601
163	Simultaneous optimization of rigidity and strength of super invar cast steel by martensitic reversion	N. Sakaguchi	 602
Stren	gth and deformation behavior 1		
164	Dynamic evaluation of development of microscopic strain distribution by digital image correlation supported by deep learning based image processing	N. Nakada	 603
165	Characterization of portevin-lechatelier effect in austenitic stainless steel using high-temperature digital image correlation analysis	S. Lee	 340*
166	Relationship between fracture behavior and local strain distributions in DP steel	Y. Tagusari	 604
	Analysis of elasto-plastic deformation behavior of pearlitic steel by EBSD method	M. Ishida	 605
	Serration behavior in transformation-induced plasticity steels characterized by DIC-method	S. Hakamata	 606
Stron	ath and deformation behavior 2		
	gth and deformation behavior 2 High temperature hardness measurement in a steel using micro-ball bounced back type hardness test	N. Koga	 607
	Flow curve regression of carbon steel at intermediate and high strain rate under the hot	IV. Roga	007
170	forming condition	H. Park	 608
171	Effect of retained austenite on tensile properties in nitrogen-contained TRIP steel	M. Sato	 343*
172	Effect of low temperature tempering on plastic deformation in low-carbon martensitic steels	K. Tomiyama	 609
Recov	ery and recrystallization		
	Effect of strain distribution by hot deformation on recrystallization behavior	Y. Ogisu	 610
174	Modeling of grain growth behavior including solute drag in ferritic steel	M. Seki	 611
175	Effect of Ti, Nb and V on precipitation and recrystallization behavior of low carbon steel	T. Hirashima	 612
176	Effect of initial texture on solid state bonding of Fe-Si alloys	H. Takahashi	 613
Mode	lling and simulation		
	Development of FS potential for Fe-C system	K. Hyodo	 614
	Evaluation of i-s interaction in α -Fe using cluster expansion Monte Carlo method	M. Enoki	 615
	Thermodynamics analysis on a formation mechanism of metastable carbides during tempering of		
	Fe-C martensite	Y. Sato	 616
180	Thermodynamic analysis on formation mechanism of Z-phase in the Cr-V-N and Cr-Nb-N ternary systems	A. Shibata	 617
Hydro	ogen embrittlement 1		
•	Comparison of hydrogen desorption peaks and deformation structures of pure iron subjected to		
182	plastic strain in the absence and presence of hydrogen Numerical study on the hydrogen thermal desorption of an iron specimen including strain-induced	Y. Sugiyama	 618
102	vacancies	K. Ebihara	 619
183	Hydrogen trapping behavior by Mo ₂ C and V ₄ C ₃ carbides	M. Kameya	 620

		,,	
184	Effect of chromium on the hydrogen embrittlement susceptibility in iron	V. Yussalla	• • • 621
185	Origin of serrated markings on hydrogen-related quasi-cleavage fracture in ferritic steels	K. Okada	• • • 622
Hvdro	ogen embrittlement 2		
•	High cycle fatigue property of SCM435 during electrochemical hydrogen charging	R. Kawakami	• • • 623
187	Effect of hydrogen on fatigue fracture behavior of martensitic steel and ferritic / pearlitic steel	H. Matsumiya	• • • 624
188	Comparison of hydrogen embrittlement susceptibility of tempered martensitic steel with/without cyclically prestressed	K. Kikuchi	625
189	Effect of residual stress on hydrogen embrittlement property of u-bend specimens of tempered martensitic steel	Y. Shibayama	• • • 273*
Hydro	ogen embrittlement 3		
190	Influence of retained austenite on hydrogen absorption behavior in rolling fatigue test	M. Kameya	• • • 332*
191	The hydrogen embrittlement property in a hot-forged TRIP-aided Martensitic steel	B. Kumai	• • • 626
192	Effect of microstructure on hydrogen embrittlement resistance in TMsteels with different cooling rate below Ms temperature	N. Kakefuda	• • • 627
Hydro	ogen embrittlement 4		
193	Mechanism and suppression method of hydrogen entry into steel by blast	M. Kawamori	• • • 328*
194	Hydrogen absorption into iron in aqueous solution containing ammonium thiocyanate under cathodic polarization	S. Ajito	• • • 628
195	Specificity of liquid metal embrittlement and hydrogen embrittlement of Ni: first-principles calculations	M. Yamaguchi	• • • 278*
196	Effect of heat-treatment on hydrogen embrittlement behavior in high-strength Fe-Ni-Al-C alloy	T. Satoh	• • • 629
197	Prediction of cold cracking of high-strength steel welded joints by AE method and finite element analysis	T. Shiraiwa	• • • 279*
	Process Evaluation and Material Characterization		
Lectur	e No. ry Session Title	Speaker	Page
	ental analysis · Precipitate and inclusion analysis	орошког	r ago
	Determination of fluorine in aluminum dross by thermal hydrolysis method	N. Hayashi	• • • 630
	Development of analysis method of fluorine in aluminium dross for iron and steel making	K. Ito	• • • 631
	Development of size distribution analysis method for nano carbides in steel using asymmetric flow field-flow fractionation (AF4)-ICP-MS	D. Itabashi	• • • 354*
Crvst	al structure analysis · On-site and on-line analysis		
•	Characterization of inhomogeneous deformation in iron based alloys	S. Suzuki	• • • 632
202	Consistency of X-ray stress measurement methods -Approach from numerical analysis-	M. Imafuku	• • • 633
203	Real-time analysis of molten steel using laser induced breakdown spectroscopy	Y. Deguchi	• • • 634
204	Laser alignment technology for measurement of on-line temperature and multi-component concentration in furnaces with TDLAS	T. Kamimoto	• • • 635

ISIJ and JIM Joint Sessions

Lectur	re No. Session Title	Speaker		Page
		Ореакег	ı	aye
	ium and its alloys 1 Production of Ti powder from TiC by sulfidation and reduction in molten salt	A. Eltefat		636
	Effect of plasma-arc melting condition on deoxidation of titanium melt	R. Abe		637
	Measurement of accurate true stress - true strain curves up to large strain at high temperature	K. AUC		057
33	in Ti-17 alloy using the image analysis tensile test method	M. Taga		638
Titan	ium and its alloys 2			
	Strength-ductility balance of the Ti-17 alloy with various microstructures and estimation of			
	dominating factor assisted by machine learning	H. Matsumoto		639
J5	Analysis of solid-solution strengthening using δ parameters in heat-resistant near- α Ti alloys	H. Masuyama		640
J6	Dependency of slip system activity on strain rate in polycrystalline α -Ti	Y. Kawano		641
Titan	ium and its alloys 3			
	Microstructural evolution of Ti-6Al-4V alloy produced by forging process combined with			
	torsional motion	H. Onishi		642
	Heat treatment behavior of Ti-V-Mn-Fe-Al system alloys	M. Ikeda		643
J9	Effect of heat treatment and testing temperature on deformation behavior of Ti-Mo-Al shape memory alloy	N. Nohira		644
J10	Reverse transformation of β phase and microstructure evolution in thermomechanically	11. 11011114		011
010	processed Fe-including titanium	T. Hashino		645
Ultra	fine grained materials -fundamental aspects for ultrafine grained structures- 1			
	Impact properties and microstructure changes of CrMnFeCoNi high entropy alloy with			
	harmonic structure	H. Fujiwara		646
	Synergy extra hardening of harmonic structure designed pure-Ni	T. Kambara		647
J13	Stress partitioning behavior of heterogeneous nano-structured duplex stainless steel	S. Suzuki		648
Ultra	fine grained materials -fundamental aspects for ultrafine grained structures- 2			
J14	Mechanical properties and deformation mechanisms of Cu-Zn alloys with various grain sizes	Y. Bai		649
J15	Deformation mechanism of harmonic structure designed Cu-10mass%Ge alloy	K. Hori		650
J16	Preferential recrystallization in austenitic stainless steel harmonic structure materials	T. Tsujino		651
Mate	ials science of martensitic and bainitic transformations and its applications 1			
	Time-dependence of magnetic field-induced martensitic transformation in Fe-Ni alloys	Y. Song		652
J18	Effects of residual stress in martensite phase on phase transformation induced by shot-peening			
	for Fe alloys	H. Sato		653
J19	Inspection of sequential γ - ϵ - α ' martensitic transformations by elastic theory in metastable austenitic stainless steels	Y. Wada		654
J20	Development of 5% Mn ferrite + austenite steel with 1500MPa-30% high strength and high	1. Wada		051
	ductility by cementite metallurgy	S. Torizuka		655
Mate	rials science of martensitic and bainitic transformations and its applications 2			
	Fcc-hcp martensitic transformation in high entropy alloys	K. Tsuchiya		656
J22	Martensitic transformation and cold rolling texture in Ti-4.5Al-3V-2Fe-2Mo alloy	H. Tobe		657
J23	Relationship between variant pairing and habit plane of lower bainite in carbon steels	T. Hayashi		658
J24	Effect of austenite grain boundary on bainite transformation behavior from grain boundaries			
	in medium-carbon steel	S. Jimbo		659
Mate	rials science of martensitic and bainitic transformations and its applications 3			
J25	Effects of Mn and Cr combined addition on bainitic transformation in Fe-0.3N alloy	K. Hara		660
J26	A comparative study on intrinsic mobility of incoherent and semicoherent interfaces during	II Danie		((1
127	the austenite to ferrite transformation Effect of Ni content on functional fetigue in Fe Mn Al Ni superplactic alleva	H. Dong		661
J27 J28		T. Hoshi S. Sato		662 663
J28	onape memory effect under stress in Cu-Ar-ivill alloys	s. saw		003

Materials science of martensitic and bainitic transformations and its applications 4

martensite in carbon steel

J29 Analysis of development of the medium carbon low alloy martensite inclusive of coarse martensite regions S. Morito 664 J30 Formation of abnormal grain structure of austenite during reverse transformation of H. Pham a hot-work tool steel 665 J31 Change in solute carbon concentration during low-temperature tempering in martensite of I Hirochia 666 7 8 9

	carbon steel	I. Hırashıma		666
J32	Change in microstructure and mechanical properties with low-temperature tempering in retained austenite included martensitic carbon steel	S. Uranaka		667
J33	Alloying effects on low-temperature tempering behaviors of Fe-N martensite	S. Young		668
Materials science of martensitic and bainitic transformations and its applications 5				
J34	Thermodynamic investigations on martensitic transformation in Co-V-Ga Heusler alloys	X. Xu		669
J35	Martensitic transformation and magnetic properties of $Co_{64}V_{15}(Si_{21-x}Al_x)$ alloys	K. Nakamura		670
J36	Inverse magnetocaloric effect in magnetic field induced austenite phase of Heusler Alloy $Ni_{41}Co_9Mn_{31.5}Ga_{18.5}$	T. Kihara		671
J37	Relation between tetragonality and residual strain in as-quenched martensite of Fe-Ni alloys	D. Fukui		672
J38	Relation between dislocation density calculated by line profile analysis and c/a ratio of			

K. Inami

673