Program of the 160 $^{\rm th}$ ISIJ Meeting (September 25-27, 2010)

High Temperature Processes

	Fign Temperature Processes			
Lecture No. Discussion Sessions	Title	Speaker	Page	
The present state of the stee	l refining process and the expected future challenges			
D1 The development of st	eel refining technology of Japan in these 15 years	S.Kitamura	• • •	527
D2 Effect of aggregation b mechanical stirring wit	pehavior of desulfurization flux on desulfurization rate of hot metal by h impeller	N.Kikuchi	•••	531
D3 Water model evaluation furnace	n for desiliconization reaction by mechanical stirrer in hot metal runner at blast	T.Nakasuga	•••	535
D4 Dominating factors on low carbon steels	behaviors of non-metallic inclusions at a solid/liquid interface in a solidifying	H.Shibata	• • •	537
D5 Changes of nitrogen a pressure	nd sulfur composition in liquid steel by blowing CaO powder under reduced	M.Numata	• • •	539
D6 Removal of impurities	in molten iron through successive three phases	H.Ono	• • •	542
D7 Application of hydroth	ermal reaction to recycling process	T.Shimizu	• • •	546
D8 Dissolution behavior o	f constituents into seawater from steelmaking slag	T.Miki	• • •	550
D9 Water model experime bath	ent and numerical simulation on interaction between top blown jet and liquid	N.Asahara	•••	554
D10 Development of multi-	-scale and multi-phase analysis in refining process	S.Shimasaki	• • •	558
Control of reduction equilib	orium for mitigation of CO2 emission of blast furnace			
D11 Reaction behavior of c	arbon composite agglomerates in blast furnace	K.Higuchi	• • •	560
D12 Reduction of reducing briquette	agent rate in blast furnace operation by carbon composite iron ore hot	A.Kasai	• • •	564
D13 (ISIJ Research Promot between iron oxide an	ion Grant)Several kinds of contact and adjacent states and reaction behaviors d carbon	Y.Kashiwaya	• • •	568
D14 Examination on optimu	um design of iron ore/carbon composite	K.Miura	• • •	572
D15 Effect of iron ore prop	erties in the carbon-ore composite on lowering the reduction temperature	T.Murakami	• • •	576
D16 Influence of mixing coa in a packed mixed bed	al composite iron ore hot briquette on blast furnace simulated reaction behavior	S.Hayashi	•••	580
D17 Effect of characteristic	c of ore on gasification behavior of carbon iron composite	T.Sato	•••	584
D18 Enhancement of reduc	tion rate of carbon iron-ore composite with sub-micron iron oxide coating	I.Ariyama	• • •	588
D19 Affect of difference of properties	placement or reactivity of iron-ore and carbon on iron-ore softening-melting	K.Sunanara	•••	592
D20 Effect of slag melting b	pehavior on metal-slag separation temperature	K.Ohno	• • •	596
D21 Effect of alkali oxide addition on the physical properties of iron-making slags		S.Sukenaga	• • •	600
D22 Effect of cementite coexistence on carburization and melting behavior of reduced iron		T.Miki	• • •	604
D23 Slag design with the ai	m of the low-temperature and speed-up of the carburization reaction	H.Ono	•••	608
Lesture Ne	Environmental, Energy and Social Engineering			
Discussion Sessions	Title	Speaker	Page	
Development of material str	ategy model for resources and environment-4			
D24 Basic consideration or	replaces of materials in the 21st century	T.Nakamura		611
D25 Global material flow ar	nalysis of steel based on the introduction of next-generation vehicles	H.Hatayama	• • •	615
D26 Development of a long - The CO ₂ emission ba	r-term simulation model of material flow(2) sed on the long term view of the car industry-	A.Inaba	•••	617
D27 Material flow analysis	on steel alloy elements associated with regional scrap generation	H.Ono	• • •	620
D28 Substance flow of meta	als embodied in international trade	K.Nakajima	•••	624
1 / NI	Instrumentation, Control and System Engineering			
Discussion Sessions	Title	Speaker	Page	
The future prospects of age	nt technologies for maintenance and development of the "Field Force" in steel	l plants		
D29 A scenario for the ima	ge enhancement of agent technologies for development of the "Field Force"	- H.Kobayashi		628
D30 Agent–based reactive	scheduling strategy	N.Fujii	• • •	632
D31 Mathematical program production scheduling	ming-based approach for designing an agent of experienced personnel in	H.Tamaki	•••	634
D32 Modeling of skilled wo production planing in s	rker agents in a learning support system for unskilled workers in charge of steel production systems using machine learning	I.Hatono	• • •	636
D33 Acquiring operation so	heduling knowledge through learning classifier systems	T.Terano	• • •	638
D34 Agent model for operation support of hot tandem rolling		M.Konishi	• • •	640
D35 Ecological interface design for hot strip rolling mill		T.Sawaragi	• • •	642

Processing for Quality Products

Lecture No.	Title
Discussion Sessions	

Speaker

Page

Program of the 160 $^{\rm th}$ ISIJ Meeting (September 25-27, 2010)

Recent trend in control technology of strip profile and flatness

D36 Review of profile and flatness control on sheet rolling	F.Fujita	••	•	646
D37 Current situation and future prospects in three-dimensional analysis of profile of rolled sheet	J.Yanagimoto	• •	•	650
D38 Improvement of strip flatness in cluster-type mill by means of numerical simularion	R.Hamada	• •	•	654
D39 Development of NSC intelligent mill	S.Ogawa	• •	•	658
D40 Recent problems of flatness control in skinpass rolling of thin steel strips	H.Kijima	•••	•	662

Microstructure and Properties of Materials

Lecture No. Discussion Sessions	Title	Speaker	Page	
Characteristics and contro	l of biofilm on the materials surface			
D41 Adhesion of oceanic	ife on the various metallic materials in marine environment	D.Kuroda	• • •	666
D42 Immersion of iron and attached microorgani	l steel materials into marine environment at ise gulf and gene analysis of sm	H.Ikegai	• • •	668
D43 Immersion of iron-ste	el slag into marine environment and biofilm formation	H.Kanematsu	• • •	670
D44 Biofilm formation on	he various metallic materials in a water-cooling system	N.Kamakura	• • •	672
D45 Fundamental investigation on the effect of EPS in biofilms on microbial influential corrosion of steel		N.Hirai	• • •	674
D46 Common properties among various biofilms		H.Morisaki	• • •	676
D47 Mechanism of slime p	roduction and carbon steel corrosion in the gas field water	Y.Tanji	• • •	677
D48 Microbiologically influ <i>aeruginosa</i>	nenced corrosion of steel surfaces induced by biofilm of <i>Pseudomonas</i>	H.Ikegai	• • •	679
D49 Measurement of Mini Ag,Cu,Zn,Mg,Co,Ni,	mum Bactericidal Concentration of Mn,Au,Pd,Cr,Ti,Sn,Pb,Al and V metallic ion for <i>S.aureus</i> and <i>E.coli</i>	N.Horikawa	• • •	682
D50 Evaluation of antibac coating thickness	terial ability of the copper coated stainless steel and its dependency for the	Y.Miyano	• • •	684

Process Evaluation and Material Characterization

Lecture No. Discussion Sessions	Title	Speaker	Pag	je	
Advances of micro-structu	ıral analysis for characterizing material properties				
D51 The speciation analy	rsis of boron in coal fly ash with the aid of solid-state NMR and FIB-TOF-SIMS	S.Kashiwakura	• •	•	685
D52 Development of rapid	d X-ray diffraction system at high temperatures for observation of sintering	M.Kimura	• •	•	689
D53 <i>In-situ</i> XPS study or	laser nitridation process on metallic surface	N.Ohtsu	• •	•	691
D54 Microstructural anal voltage and take-off	ysis of oxide layer on low carbon steel by BSE imaging controlled by acceleration angle	T.Aoyama	••	•	692
D55 In situ observation o	f reduction of iron oxides by XAFS	T.Takayama	• •	•	694
D56 (Invited Lecture)Cha TEM, XRD and EBS	aracterization of deformed and recristallized structure of Co based superalloy with D	T.Otomo	• •	•	696
D57 X-ray stress and str	ain analysis methods for ultimately textured materials	M.Imafuku	• •	•	700
D58 A new evaluation for	macro and micro stress in polycrystalline metal using X-ray diffraction	N.Yamada	• •	•	704
D59 X-ray diffraction ana	alysis of deformed microstructures of TWIP steel	S.Sato	• •	•	708
D60 Microstructural char	acterization of strain-induced martensitic transformation in TRIP steels	E.Kwon	• •	•	712
Recent progress in chemic	al methods of analysis related to iron and steel making utilizing a flow system a	nd newly develo	ped		
pretreatment system					
D61 Application of solver	nt extraction techniques to a FI system for the steel samples	T.Taniai	• •	•	714
D62 Flow injection analys	sis of a micro amount of boron(borate) in iron and steel samples	I.Adachi	• •	•	716
D63 A device of continuo sample continuous fl	ous flow system by using both methods of chemiluminescence detection and ow injection for determination of boron in steel	M.Ishii	• •	•	718
D64 Simple and rapid det spectrophotometric	ermination of molybdenum in iron and steel with detection in-line coupled with separation in a flow injection system	T.Yamane	• •	•	722
D65 Precise determinatio flow method	n of chromium in stainless steels using 1,5-diphenylcarbonohydrazide by stopped	K.Watanabe	••	•	725
D66 Elimination of Fe [™] m spectrometry	atrix for the determination of traces of metals by electrospray ionization mass	K.Tsunoda	••	•	727
D67 Effects of contaminat molybdosilicate blue	nts on blank value in the determination of trace silicon in steel samples by spectrophotometry after silicon tetrafluoride separation	T.Ashino	• •	•	728
D68 Determination of tin TBP-impregnated re	and tellurium in iron and steel by combining solid phase extraction with sin in hydrobromic acid media and ICP-AES	K.Oguma	• •	•	730
D69 (Invited Lecture)Sep Ion-exchange-adsor	aration and preconcentration of trace amounts of elements in iron and steel by ption/lon-pair-elution	N.Uehara	• •	•	731
New era of neutron scatter	ring and diffraction as a tool for the steel research				
D70 Development of the application to struct	ural analysis of iron scattering instrument(TAIKAN) in J-PARC and its	J.Suzuki	••	•	735
D71 Possibility of in situ	neutron diffraction on steels	S.Harjo	• •	•	738
D72 The current status o	f iMATERIA	T.Ishigaki	• •	•	739
D73 Structural analysis o	f multi-component calcium-ferrite by neutron powder diffraction	M.Imafuku	• •	•	740
D74 (Invited Lecture)Tex neutron source	ture imaging by the wavelength resolved radiography based on an accelerator	Y.Kiyanagi	• •	•	743
D75 Measurement of text	ure by neutron diffraction	T.Suzuki	• •	•	744
D76 Neutron diffraction a	nalysis on stacking fault energy and deformation microstructure	T.LEE	• •	•	748

Program of the 160 $^{\text{th}}$ ISIJ Meeting (September 25-27, 2010)

D77 Optimization of multiphase textures measured by neutron diffraction	P.XU	••	•	752
D78 (Invited Lecture)Popularizing small-angle neutron scattering instruments	M.Furusaka	••	•	756
D79 Analysis of critical stress condition in hydrogen cold cracking of high strength weld metal by neutron diffraction	H.Sueyoshi	••	•	758
D80 Microstructure and deformation behavior of an ultrafine-grained electrodeposited iron	Y.Su	••	•	762
D81 Bainitic transformation behavior studied by simultaneous small-angle neutron scattering, neutron diffraction and dilatometer measurement	H.Nishijima	•••	•	766
D82 (ISI] Research Promotion Grant)Crystal orientation relationship between ω phase formed after HPT-straining and α phase after reverse-transformation in pure Ti	Y.Todaka	••	•	769
D83 Application of small-angle neutron scattering to steel research	M.Ohnuma	•••	•	773