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Abstract: This study investigates the austenite-to-ferrite (g → a) and ferrite-to-austenite (a → g) 
transformation behaviours during cyclic heating and cooling processes in Fe-C-Mn and Fe-C-Mn-Si 
alloys by the non-equilibrium multi-phase-field (NEMPF) model coupled with CALPHAD-based 
thermodynamic database. In this paper, we present the effect of the interfacial permeability of solute 
atoms, which is a model parameter governing the partitioning rate of solute atoms at the a/g interface, 
on the cyclic transformation behaviour in a Fe-C-Mn-Si alloy. The simulation results showed that the 
NEMPF model captured the stagnant stage where the migration of the a/g interface was pinned in the 
cooling process, and that the stagnant stage corresponded to the time for switching the polarity of Mn 
and Si spikes formed at the a/g interface. The simulation results of the cyclic transformation behaviour 
in multiple heating-cooling processes showed that when the interfacial permeability of Mn atom was 
decreased, the length of the stagnant stage significantly extended as the number of cycles increased.  
 
 
1. INTRODUCTION 
 Prediction of the austenite-to-ferrite (g → a) transformation is important for developing advanced 
high strength steels. Various numerical simulation methodologies have been used for predicting the g 
→ a transformation behaviour which strongly depends on temperature and chemical composition of 
steels. Recently, the phase-field and the multi-phase-field methods have been widely used for 
simulating microstructure evolutions during the g → a transformation in Fe-C binary [1, 2] and 
Fe-C-Mn ternary alloys [3, 4]. The authors have also investigated the g → a transformation behaviour 
in Fe-C-Mn ternary alloys using the multi-phase-field model coupled with CALPHAD-based 
thermodynamic database [5]. In this study, we have investigated the cyclic g → a and a → g 
transformations in Fe-C-Mn and Fe-C-Mn-Si alloys using the non-equilibrium multi-phase-field 
(NEMPF) model [6]. We have demonstrated that the model can capture the stagnant stage during the 
cyclic transformation [7, 8] in the multi-component alloys that include substitutional alloying elements. 
This paper presents the simulation results of the cyclic transformation in a Fe-C-Mn-Si alloy obtained 
by the NEMPF model. In particular, we show the effect of the interface permeability parameter that 
governs the partitioning rate of solute elements on the cyclic transformation behaviour: the migration 
of a/g interface and the diffusion of solute elements.  
 
2. NON-EQUILIBRIUM MULTI-PHASE-FIELD MODEL 
 Consider a system composed of N ferrite and austenite grains and m solute species. In order to 
simulate the migration of a/g interface during the phase transformation, the local volume fraction of ith 
grain is defined using the phase field variables, fi. The value of fi is unity inside the ith grain, and 
varies from 1 to 0 in an interface between the ith and jth grains. On the other hand, the total 
concentration field variable of the solute atom k (k = C, Mn, Si) is expressed by the mixture-law as:  
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where ci

k denotes the local concentration field variable of k atom in the ith grain.  
    Using the phase field and concentration field variables, the total free energy of the system is 
defined as the sum of the gradient energy, the double-well potential energy and the chemical free 
energy as [9]:  
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where fi is the chemical free energy density of the i grain. In this study, the chemical free energy are 
obtained from Thermo-Calc software [10]. lj is a Lagrange multiplier which is used for satisfying Eq. 
(1). aij and Wij are the gradient coefficient and height of the double-well potential between the ith and jth 
grains, respectively. These parameters are given as functions of the interfacial energy between the the 
ith and jth grains, sij, and the thickness of diffuse interface, d, [6].  
     The time evolution equation of the local concentration field variable for the NEMPF model is 
expressed as [6]:  
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where Pi

k is called as the interfacial permeability [6, 9] and describes the kinetic coefficient of the 
diffusion of k atom in the ith grain. Because this parameter governs the partitioning rate of solute 
elements in the a/g interface, the diffusion behavior of solute atoms during the phase transformation 
under various conditions can be simulated by changing the value of Pi

k. It should be noted that Eq. (3) 
is solved for simulating the solute partitioning only in the a/g interfacial region, while the evolution of 
the total concentration field variable is calculated by solving the following diffusion equation:  
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where Dkj

i is the diffusion coefficient of the solute atom k in the ith grain. In this study, the diffusion 
coefficients are calculated by the method proposed by Anderson et al. [11] using the diffusion mobility 
data obtained from Thermo-Calc software.  
    On the other hand, the time evolution of the phase field variable which describes the migration of 
an interface is given by the following equation [6, 9, 12]:  
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where 𝑀𝑀 ij and D𝑔𝑔 ij are the phase field mobility and the chemical driving force of the phase 
transformation:  
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whre Mij is the mobility of the interface between the ith and jth grain.  
    It is important to note that in order to reduce computational cost, we employ the interpolation 
functions of the thermodynamic data; the chemical free energy density, the chemical potential, and the 
diffusion mobility in the a and g phases that are derived from Thermo-Calc software with TCFE7 and 
MOBFE2 databases. The detail of the interpolation function can be found in the author’s paper [6]. 
 
3. SIMULATION CONDITION 
    One-dimensional simulations of the cyclic transformation in the a + g two-phase region for 
Fe-0.023C-0.17Mn-0.2Si [wt.%] alloy are performed. The length of the computational domain is 20 
µm. The a phase with a thickness of 1 µm is located at the origin of the computational domain and the 
other domain is defined as the g phase. The initial distribution of the solute atoms are set to be uniform 
over the whole computational domain. Table 1 shows the physical values and parameters used in this 
study. It is important to note that the thickness of the diffuse interface is set to be submicrometer in 
order to simulate the stagnant stage in the cyclic transformation. The mobility of a/g interface is given 
by the Arrhenius-type equation:  
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    In order to investigate the effect of the interfacial permeability on the cyclic transformation 
behavior, we test two different cases of the interfacial permeability as listed in Table 2. For the case 1, 
the values of the interfacial permeability used in the previous study [6] are used as a reference. The 
reference values were set to the highest value with which we could perform a stable computation for a 
given grid spacing and time increment. For the case 2, the interfacial permeability of Mn atom is set to 
be lower than that in the reference case (the case 1). For both cases, the value of interfacial 
permeability of solute atoms in the g phase is set to be the same as that in the a phase.  
    The cyclic transformations are simulated for the temperature profile shown in Fig. 1. Firstly, an 
isothermal holding at 1133 K for 150 s is used to obtain an initial a + g two phase microstructure. 
Then, the heating and cooling processes between 1133 K and 1158 K are repeated for every 150 s at 
the rate of 10 K/min.  
 

Table 1. Physical values and parameters used in this study [6]. 
Interfacial energy, σij 0.5 [J/m2] 
Activation energy, Q 1.4 × 105 [J/mol] 
Gas constant, R 8.314 [J/(K·mol)] 
Pre-exponential factor, M0 3.5 × 10-7 [m4/(Js)] 
Pressure, P 101325 [Pa] 
Spacing of finite difference grids, Δx  10 [nm] 
Thickness of interface, δ  70 [nm] 
Molar volume, Vm 7.09 × 10-6 [m3/mol] 
Time increment, Δt  1.0 × 10-7 [s] 
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Table 2. Interfacial permeability of solute atoms used in this study [6]. 

Case # PC [m3/(Js)] PMn [m3/(Js)] PSi [m3/(Js)] 

1 10-9 10-7 10-7 
2 10-9 10-14 10-7 

 

 
Fig. 1 Temperature profile used for simulating the cyclic g → a and a → g transformations. The heating and 
cooling rates are set to be 10 K/min. and -10 K/min., respectively. 
 
4. RESULTS AND DISCUSSION 
    Fig. 2(a) shows the variations of the a phase volume fraction during the cyclic transformation for 
three cycles in the case 1. Because the a → g transformation occurs in the first heating process, the 
volume fraction of a phase is reduced continuously. After that, the inverse transformation stage is 
observed: the reduction of the a phase volume fraction, i.e., the a → g transformation, continues, even 
though the first cooling process starts. Then, we observe the stagnant stage where no phase 
transformation takes place. It should be noted here that the stagnant stage is defined as the stage where 
the variation of a volume fraction is less than 0.1%. After the stagnant stage, the g → a transformation 
proceeds in the cooling process. It is seen that the a volume fraction at the end of the first cycle (1133 
K and 450 s) is decreased compared to that at the beginning of the first cycle (1133 K and 150 s), 
which is referred to the transformation hysteresis [6]. The inverse and the stagnant stages are also 
observed in the second and the third cycles. In the case 1, we find that the length of the stagnant stage 
does not change even though the number of cycles increases.  
    On the other hand, as shown in Fig. 2(b), it is found in the case 2 that the length of the stagnant 
stage in the first cycle is shorter than that in the case 1, while the increase of the number of cycles 
largely extends the stagnant stage. It is also interestingly shown that the rate of g → a transformation 
after the stagnant stage increases with increasing the cycle number.  
 

 
Fig. 2 Variations of a phase volume fraction in the cyclic transformation for different cases. Gray dashed-dotted 
line indicates the equilibrium volume fraction of a phase calculated by Thermo-Calc software. Gray hatched 
lines show the stagnant stage where the a volume fraction change is less than 0.1%.  
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    The evolutions of C, Mn and Si concentrations in the first cycle of the cyclic transformation for 
the case 1 are shown in Fig. 3(a). In the heating process from 1133 K to 1158 K (from 150 s to 300 s), 
the g phase grows with the partitioning of interstitial C and substitutional Mn and Si. This g growth 
takes place under the local equilibrium (LE)-like mode. In the cooling process from 1158 K to 1133 K 
(from 300 s to 450 s), the stagnant stage was observed in the early stage of the cooling process as 
shown in Fig. 2 (a). As already reported in the previous paper [6], in the stagnant stage, the switching 
of Mn and Si spike polarities occurs and it prevents the migration of the a/g interface. After the 
stagnation stage, we observe the growth of a phase which accompanies a positive Mn and a negative 
Si spikes at the migrating a/g interface. Thus, this result indicates that the g → a transformation after 
the stagnant stage proceeds under the negligible-partition local-equilibrium (NPLE)-like mode. In the 
later stage of the cooling process, because the a/g interface approaches the Mn and Si spikes formed in 
the initial isothermal holding process, the migration rate of a/g interface slows down, resulting in the 
transformation hysteresis.  
    On the other hand, Fig. 3(b) shows the evolutions of the C, Mn and Si concentrations in the first 
cycle of the cyclic transformation for the case 2. Although the profiles of C and Si concentrations in 
the heating and cooling processes are almost the same as those in the case 1, the magnitude of the Mn 
spike largely decreases as the interfacial permeability of Mn atom decreases, resulting in the 
shortening of the time for switching the Mn spike polarity, which in turn leads to the shorter stagnant 
stage in the first cycle than that in the case 1. 
 

 
Fig. 3 Evolutions of C, Mn and Si concentrations in the first cycle of the cyclic transformation for (a) the case 1 
and (b) the case 2.  
     

xw 
Fig. 4 Profiles of C, Mn and Si concentrations at (a) the beginning and (b) the ending points of the stagnant stage 
for three cycles in the case 1.  
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    In order to elucidate the variation of the stagnant stage length during the cyclic transformation, 
Fig. 4 shows the profiles of the C, Mn and Si concentrations at the starting and the ending points of the 
stagnant stage in three cycles for the case 1. It is seen that the average Mn concentration in the a phase 
decreases as the cycle number increases, but the minimum Mn concentration in the a phase at the a/g 
interface is almost unchanged. On the other hand, the height of Mn spike at the ends of the stagnant 
stage is almost the same for all cycles. Therefore, the length of stagnant stage would not be changed in 
the case 1.  
    Fig. 5 shows the profiles of the C, Mn and Si concentrations at the starting and the ending points 
of the stagnant stage in the cases 2. It is found from the enlarged Mn profile in Fig. 5(b) that the height 
of the Mn spike at the ends of the stagnant stage slightly increases as the cycle number increases. 
Because the permeability of Mn atom in the case 2 is much smaller than that in the case 1, the time for 
switching the Mn spike polarity significantly increases compared to that in the case 1, resulting in the 
extension of the stagnant stage in the case 2. 
 

 
Fig. 5 Profiles of C, Mn and Si concentrations at (a) the beginning and (b) the ending points of the stagnant stage 
for three cycles in the case 2. 
 
5. CONCLUSION 
     The cyclic g → a and a → g transformations in Fe-C-Mn-Si alloy were investigated using the 
NEMPF model. In particular, the effect of the interfacial permeability of solute atoms on the cyclic 
transformation behaviour was examined. The simulation results demonstrated that the NEMPF model 
captured the special features of the cyclic transformation: the inverse transformation stage, the 
stagnant stage and the transformation hysteresis. We revealed that the decrease of the interfacial 
permeability of Mn atom extended the time for switching Mn spike polarity, which led to the longer 
stagnant stage in the later cycles.  
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