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Abstract: A simple physical grain boundary model is often employed in discussing the segregation 
behaviour in Fe, where the grain boundary has a constant thickness and the Gibbs energy can be 
assigned to the boundary material. The Gibbs energy of the grain boundary is sometimes expressed as 
a liquid or amorphous state. It seems unusual to apply the Gibbs energy of the liquid state to the grain 
boundary; however, this could be reasonable when considering the structural analogy between an 
amorphous state and a grain boundary composed of simple structural units. Based on this background, 
the present study used molecular dynamics simulation to construct grain boundary structures. The Fe 
polyhedral structures were extracted from the grain boundary layers. The segregation energies for 
alloying elements were calculated with some regions around a polyhedral structure being truncated 
into spherical shapes and the energies between the cases where a solute atom is inside and outside the 
polyhedral structures were compared using the first-principles calculation. Based on these results, the 
origin of the grain boundary segregation behaviour in Fe is discussed.  
 
 
1. INTRODUCTION 
 Grain boundaries play the most important role among steel defects in determining the mechanical 
properties of steels. A simple physical grain boundary model shows that the grain boundary has a finite 
thickness, while the bulk phase is infinite in size. Under this assumption, the common tangent law 
does not denote the equilibrium between the grain boundary and the bulk phase, but the grain 
boundary concentration is defined by the tangent to the Gibbs energy of the grain boundary parallel to 
that for the bulk phase at the matrix concentration [1]. A question arises: how can the free energy of 
the grain boundary phase be expressed when applying a parallel tangent scheme? Sometimes the 
Gibbs energy of the grain boundary is expressed using the thermodynamic properties of the liquid 
phase. In the present study, the validity of such a treatment is discussed from a thermodynamic 
perspective. 
 
2. PRIOR SEGREGATION MODEL 
2.1. Langmuir–McLean type of segregation isotherm 
 The empirical approach taken to analyze grain boundary segregation is based on the equality of 
the chemical potentials of the components in equilibrium; this model has often been applied when 
considering experimental data on grain boundary segregation [2]. For a binary system, the model leads 
to the expression of the grain boundary solute concentration xX

gb as  
 

 

xX
gb 

xX
 exp EX

gb

RT











1 xX
 exp EX

gb

RT











 (1) 

 
where xX

  is the bulk solute concentration and EX
gb  is the molar energy of segregation. The 

segregation coefficient kX
gb  is defined in terms of EX

gb  as 
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kX

gb  exp EX
gb

RT









 . (2) 

 
2.2. Parallel tangent scheme 
 Let us consider a closed system containing the grain boundary ( gb ) inside the crystalline 
grains ( ). The grain boundary has a finite thickness, while the bulk phase of the crystal is infinite in 
size. Grain boundary segregation is then defined as a redistribution of solute atoms between the crystal 
and grain boundary. In an equilibrium state, the total Gibbs free energy of the whole system Ggb  
must be minimized. The variation in Ggb  when small amounts of matrix atoms A and segregated 
atoms X, dmA

and dmX
, are moved from   to the grain boundary is given by 

 

 
dGgb  A

gb A
 dmA  X

gb X
 dmX  0.

 
(3) 

 
As dmA  and Xdm  vary arbitrarily in a typical two-phase equilibrium, the condition to fulfil Eq. 3 is 
the so-called common tangent for finding the equilibrium: 
 
 A

gb  A
 , X

gb  X
 . (4) 

 
However, if the total number of atoms in the finite grain boundary region, mA  mX , remains 

constant, the value of A Xdm dm  should be zero. Inserting this condition into Eq. 3, we obtain the 
equilibrium condition for the grain boundary and matrix phase as 

 
 A

gb A
  X

gb X
 . (5) 

 
The equilibrium concentration at the boundary xX

gb  is then found by parallel tangent construction 
based on the composition of the matrix [1]. 
 
3. THERMODYNAMIC EXPRESSION OF SEGREGATION ENERGY 
3.1. Using regular solution approximation 

Simple physical grain boundary models for metals have been used many times in the 
discussion of grain boundary segregation. If the grain boundary has a constant thickness and the 
material in the boundary can be regarded as a separate phase, the regular solution model can be 
applied to the grain boundary region in the A–X binary system. In this model, the chemical potentials 
for each component are expressed as 

 

 
A

  oGA
  RT ln 1 xX

   xX
 2

LA,X
  (6) 

 
X

  oGX
  RT ln xX

  1 xX
 2

LA,X
  (7) 

 
A

gb  oGA
gb  RT ln 1 xX

gb  xX
gb 2

LA,X
gb  (8) 

 
X

gb  oGX
gb  RT ln xX

gb  1 xX
gb 2

LA,X
gb

    
 (9) 

 
where oGi

  and oGi
gb  denote the molar Gibbs energies of element i (= A, X) in the matrix   and 

grain boundary, respectively. The parameters LA,X
  and LA,X

gb  represent the interaction energies 
between atoms A and X in the matrix phase and grain boundary region. For low X content, the 
equilibrium condition of Eq. 5 thus yields 
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. (10) 

This equation has the same form as the McLean segregation isotherm. Consequently, we obtain an 
expression for the grain boundary solute concentration with the regular solution approximation: 
 

 

xX
gb 

xX
 exp GX

seg

RT











1 xX
 exp GX

seg

RT











 

(11) 

 
where.  

 
GX

seg  oGA
gb  oGA

   oGX
gb  oGX

   LA,X
gb  LA,X

  . (12) 

Comparison of Eq. 11 with Eq. 1 gives EX
gb  GX

seg .  
 
3.2. Using compound energy approximation 

The same consideration can be applied to the system in which a solution phase is described 
by the compound energy approximation [3]. The Gibbs free energy for the solution in which two 
sublattices exist and the lattice ratio is  a : c , i.e., Aa X,Va c

 is expressed as 
 

 
Gm

  yX
 oGA:X

  yVa
 oGA:Va

  RTc yX
 ln yX

  yVa
 ln yVa

   yX
 yVa

 LA:X,Va


 
 (13) 

 
where oGA:X

  represents the Gibbs energy when A atoms occupy the first sublattice and X atoms 

occupy the second sublattice. oGA:Va
  denotes the Gibbs energy when the second sublattice is vacant; 

therefore, this parameter substantially represents the value for pure A element. LA:X,Va
  is the 

interaction parameter between the X atoms and vacancy in the second sublattice. yX


 is the site 
fraction of X atoms in the second sublattice. If the X atoms behave interstitially in the crystal lattice, 
this model is described as the interstitial solution model. The chemical potentials for each component 
in the matrix   and grain boundary region are derived as Eqs. 15 through 18 following Eq. 14.    
 

 
AaXc

  aA
  cX

  oGm
  y j

 
oGm



y j


j

 
 oGm



yA


 oGm



yX


  (14) 

 
A

  1 a  oGA:Va
  c a  RT ln 1 yX

   1 a  yX
 2

LA:X,Va
  (15) 

 
X

  1 c  oGA:X
  oGA:Va

  LA:X,Va
   RT ln

yX


1 yX

 2 1 c  yX

 LA:X,Va
  (16) 

 
A

gb  1 a gb oGA:Va
gb  c a gb

RT ln 1 yX
gb   1 a gb

yX
gb 2

LA:X,Va
gb  (17) 

 
X

gb  1 c gb oGA:X
gb  oGA:Va

gb  LA:X,Va
gb   RT ln

yX
gb

1 yX
gb
 2 1 c gb

yX
gbLA:X,Va

gb .
 

(18) 

 
Considering that both yX



 and yX
gb  are quite small, Eq. 5 may be rearranged as 
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 (19) 

where
 

GX
A  1 c  oGA:X

  oGA:Va
  LA:X,Va

    (20) 

 
GX

gbA  1 c gb oGA:X
gb  oGA:Va

gb  LA:X,Va
gb  .  (21) 

 
When yX

  and yX
gb  possess very small values,  and  hold; therefore, the grain 

boundary solute concentration xX
gb  and the segregation energy are given as Eqs. 22 and 23, 

respectively. 

 

xX
gb 

xX
  exp

GX
seg

RT











1 xX
  exp

GX
seg

RT











 (22) 

 
GX

seg  GX
A GX

gbA   oGA:Va
gb  oGA:Va

   (23) 
 
3.3. Calculation of segregation energy 

Using Eqs. 12 and 23, GX
seg  was calculated based on the available thermodynamic 

parameters of the binary systems [4-14]. The experimental measurements of the segregation energy 
EX

gb  are compared with these results in Table 1, where the thermodynamic parameters of the liquid 
phase are substituted for those of the grain boundary. Although the models employed in sections 3.1 
and 3.2 are rather simplified, a good agreement was observed between the calculated GX

seg  and the 

published segregation energy EX
gb . 

 
Table 1.  Comparison of experimental segregation energy EX

gb  with calculated GX
seg . 

The EX
gb  values in this table were summarized by Lejček [15]. 

Elements Temp.  
(K) 

EX
gb

 
(kJ/mol) 

GX
seg

 
(kJ/mol) 
at 800 K Elements Temp. 

(K) 
EX

gb
 

(kJ/mol) 

GX
seg

 
(kJ/mol) 
at 800 K 

GX
seg

 
(kJ/mol) 

at 1200 K

GX
seg

 
(kJ/mol) 

at 1200 K

P 

853 50 

44 
Mn 

823 8 5 
773 44 to 33.5 723–923 5.4 2 
873 53.1 

Mo 

773 11.8 to 8.8 15 973 55.2 823 0 
– 55.5 

50 

– 50 11 873 43.1 1073 28 
823 46.6 

Cr 
823 0 15 

723–1173 47 853 20 10 

Si 
1073 17 17 Nb 1073 38 

52 
42 

823 15.1 49 
B 

673 39 
76 823 17 673 44 

S 823 51.5 63 673 30 to 34 
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873 141.1  673 49 101 
973 163.9 63  1073 100 
1143 75 

C 
873 75 62 

 
Sn 

823 44 19 
 

– 92.4 
823 45.3 873 76 19 
1693 103 11 

Cu – – 5 

Ni 823 14.4 17 – – 8 
823 3 2     

 
4. CONSTRUCTION OF GRAIN BOUNDARY STRUCTURE USING MOLECULAR 
DYNAMICS SIMULATION 

From the above discussion, the grain boundary energy and the energy of the liquid phase 
were shown to have approximately equivalent values. It is well known that the structures of liquid 
metals can be generally described by dense random packing of arrays of rigid spheres. According to 
the X-ray structural analysis, polyhedral structures composed of solvent atoms are observed in liquid 
alloys; these polyhedra show several vacancies or holes [16]. The solute atoms with appropriate 
atomic sizes will occupy these holes and the thermodynamic stability of the polyhedral cluster is 
accounted for by the formation of a local ordered structure between solvent and solute atoms. 
Considering its structural similarity between its amorphous phase and grain boundary, the same 
stabilization mechanism could be applied to grain boundary segregation. We then attempted to 
construct grain boundary structures using molecular dynamics (MD) simulation and used the 
first-principles method to calculate the 
thermodynamic stability of the polyhedral 
structure. 

In the present study, our target was the 
random grain boundary of bcc Fe. First, two �-Fe 
cells were pasted at the grain boundary: one grain 
was tilted by 15 degrees clockwise, while the other 
was tilted by 15 degrees anticlockwise where the 
rotation axis is parallel to the boundary plane. 
Furthermore, the right-hand cell was twisted by 14 
degrees where the rotation axis is perpendicular to 
the boundary plane in order to produce 
randomness in the atomic configuration at the 
grain boundary. The structure was then annealed 
to relax the distortion accumulated in the 
boundary. The Ackland potential [17] was used 
in the MD simulation with several variations of 
the annealing temperatures. Figure 1 visualizes 
the grain boundary layer by counting the coordination numbers around vacancies; i.e., the brighter the 
colour, the higher the coordination number. Specifically, the blue atoms have 8 coordination numbers, 
which are equivalent to bcc; however, atoms with higher coordination numbers exist in the grain 
boundary layer. 

The Fe polyhedral structures extracted from the grain boundary layers show typical 
polyhedral structures, i.e., hexahedron, octahedron, and decahedron. These types of polyhedral 
structures can often be observed in bcc structure. However, tetra dodecahedron was also found in the 
structure, which is the same as the structure found by Bernal [18] in amorphous alloys. This structure 
is rare in crystal structures and peculiar to amorphous alloys. According to the results, we supposed 
that an amorphous-like random structure was created for grain boundary layers in the present study. 
We then attempted to calculate segregation energies when a solute atom is located in the centre of the 
polyhedral structure. The procedure is as follows: some regions around a polyhedral structure were 
truncated into spherical shapes and the energies between the two states where a solute atom is inside 
and outside the polyhedral structure were compared based on the first-principles calculation. In the 
comparison, only atoms next to the vacancy site were relaxed and the other atoms were fixed to their 

 

Fig. 1 Grain boundary structures were constructed by 
(a) annealing at 300K  
(b) annealing at 1000K after melting at 3000K  
(c) annealing at 300K after following the method (b). 
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original positions. In this calculation, three different diameters for vacancies in polyhedra were 
considered, i.e., 2.095, 1.837, and 1.609 Å. The number of surfaces for each polyhedral structure is 12. 
The segregation energies depending on vacancy diameter were calculated for C, B, P, Ni, Cu, and Mo. 
The segregation energies vary with the size of vacancies; therefore, the observed segregation energies 
are supposed to be determined by a product of the frequency factor of formation for vacancies and 
their segregation energies. Irrespective of the absolute values for segregation energies, a good 
agreement was observed between the calculation and experiments. Therefore, we concluded that grain 
boundary segregation could be understood as a process for alloying elements located in a properly 
sized vacancy in the grain boundary of a polyhedral structure, which forms a local ordered structure 
with the surrounding atoms. 
 
5. CONCLUSIONS 

In the present study, the regular solution approximation was applied to calculate grain 
boundary segregation in iron. The Gibbs energy of the liquid phase in a system was adopted to that for 
the grain boundary, considering the structural analogy between the amorphous state and a grain 
boundary composed of simple structural units. A good agreement in segregation behaviour between 
our calculations and experiments was found. In addition, MD simulation was used to construct a grain 
boundary structure and the properties of polyhedral structures were analyzed. According to the present 
analysis, the grain boundary segregation in iron could be understood as a process for alloying elements 
located in a properly sized vacancy in the grain boundary of a polyhedral, which forms a local ordered 
structure with the surrounding iron atoms. 
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