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Abstract: We construct a phase-field model that considers the elastic energy derived from the fcc→bct 
crystal lattice deformation and slip deformation during the martensitic transformation (MT) in low-
carbon steels. The MTs at 650 K and 700 K in Fe-0.1mass%C steel are simulated to examine the effect 
of the yield stress magnitude on the martensite microstructure. It is found that the variant domain size 
of the martensite phase decreases with increasing the yield stress magnitude at 650 K, but it is 
independent of the yield stress condition at 700 K. 
 
 
1. INTRODUCTION 
 During the martensitic transformation (MT) in low-carbon steels, a high dislocation density is 
introduced into the martensite (α’) phase [1,2]. The elastic energy during the MT influences the size and 
morphology of the α’ phase. A phase-field simulation study [3] revealed that the slip deformation of the 
α’ phase during the MT had an important role in the (111)γ habit plane formation. On the other hand, it 
has been reported that the slip deformation occurs in the surrounding austenite (γ) phase during the MT 
[4]. The precise knowledge on the effect of the slip deformation of the α’ and γ phases on the MT is 
essential for the microstructure control. In this study, we construct a phase-field model that considers 
the elastic energy derived from the fcc→bct crystal lattice deformation and the slip deformation of the 
α’ and γ phases during the MT. In a microstructure simulation, a yield stress value is assumed and the 
slip deformation is calculated in the region where the von Mises yield criterion is exceeded. The yield 
stress value is changed and its effect on the MT is examined by phase-field simulations. 
 
2. CALCULATION METHOD 
2.1. Phase-field model 
 Long-range order parameters 1 2 3{ ( , )} ( , ), ( , ), ( , )i t t t t   r r r r   ( 1,2,3i    numbering tetragonal 
variant domains of the α’ phase), density functions for dislocation ( ) ( )

α'{ ( , )}i mp t r
( ) (1) ( ) (2)

α' α'( , ), ( , ),i ip t p tr r   ( 1,2,m    numbering slip systems in the α’ phase) and ( )
γ{ ( , )}np t r

(1) (2)
γ γ( , ), ( , ),p t p tr r  ( 1,2,n   numbering slip systems in the γ phase) are adopted as field variables. 
( , )i t r  represents the structural density of each of the three tetragonal variant domains derived from 

the fcc→bct crystal lattice deformation. ( , )i t r  is equal to unity if the vector r  is inside a variant 
domain of i  and is zero otherwise. ( ) ( )

α' ( , )i mp tr  and ( )
γ ( , )np tr  are in inverse proportion to the average 

spacing between neighboring sheared regions by dislocations ( ) ( )
α' ( , )i mD tr  and ( )

γ ( , )nD tr , respectively: 
 

( ) ( ) ( ) ( ) ( ) ( )
α' α' α'( , ) ( , ),i m i m i mp t D tr b r  (1) 

( ) ( ) ( )
γ γ γ( , ) ( , ),n n np t D tr b r  (2) 

 
where and ( ) ( )

α'
i mb  and ( )

γ
nb  are the Burgers vectors. The temporal evolution of field variables is given 

by the following equations [5]: 
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where L  and pL  are kinetic coefficients, and G  is the total free energy of microstructure. The G  
is formulated as a functional of field variables: 
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where , ,A B C  are Landau energy coefficients,   and p  are gradient energy coefficients, ( ) ( )

α'
i mn  

and ( )
γ
nn  are unit vectors of the slip plane normal, and elE  is the elastic energy. The elE  is given by 

 

  0 0
el

1 ( , ) ( , ) ( , ) ( , ) ,
2 klpq kl kl pq pqE C t t t t d        r r r r r r  (7) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3
γ γ γ γ0 ( ) ( ) ( ) ( )α' α' α' α'

α' γ( ) ( ) ( )
1 α' γ

.
2 2
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In Eq. 7, klpqC   is the elastic constant, kl   is the total strain, and 0

kl   is the eigenstrain [6]. The 
eigenstrain given by Eq. 8 considers the fcc→bct crystal lattice deformation and the slip deformation of 
the α’ and γ phases. The transformation strain ( )i

kl  is calculated from the lattice parameters of the α’ 
and γ phases [3]. 
 
2.2. Simulation conditions 
 The MTs in Fe-0.1mass%C alloy were simulated at 650 K and 700 K. 64 64 64   computational 
grids were used for three-dimensional simulations. Unit grid size was set as 0l ~5.76 nm (the system 
size was 369 369 369    nm3). The periodic boundary condition was assumed along all three 
dimensions. We assumed the heterogeneous nucleation of the α’ phase at a dislocation loop in an 
undercooled γ phase [7] and simulation was started by placing an α’ variant domain at the center of the 
computational cell. Landau energy coefficients were set as *32A G   , *96 12B G G      and 

*64 12C G G     [8], where G  is the driving force for the MT. *G  is the Gibbs energy barrier, 
which is related to the interface energy    and gradient energy coefficient    through 

* 2
m9 /16G V    , where mV  is the molar volume. The Gibbs energy difference between the α’ and γ 

phases was estimated from the Thermo-Calc TCFE8 database and was used as G . Note that the Gibbs 
energy of the ferrite phase was used as that of the α’ phase. The interface energy   = 0.24 J m-2 was 
employed [9]. The gradient energy coefficients were set as 146.65 10

   J m2 mol-1 and 
136.25 10p
   J m2 mol-1. For simplicity, the isotropic and elastically homogeneous system was 

assumed. Temperature and composition dependencies of lattice parameters and elastic constants were 
considered [10-15]. Slip deformation of   α'

101 111  and   γ
111 110  slip systems were considered. 

Eqs. 4 and 5 were solved in the region where the von Mises yield criterion was exceeded. The magnitude 
of the yield stress y   was changed from 0 MPa to 500 MPa and its effect on the microstructure 
evolution was examined. The slip deformation in the γ phase was assumed to be inherited by the α’ 
phase during the MT. 
 
3. RESULTS AND DISCUSSION 
 Fig. 1 shows the simulation results of MT at 600 K when the yield stress is assumed as y  = 0 
MPa. Three different colors represent three tetragonal variants of the α’ phase. It is seen from Fig. 1 that 
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the MT progresses with forming the multi-variant self-accommodating structure. It has been reported 
that the formation of multi-variant structure is effective for relaxing a part of the elastic energy 
associated with the MT [16]. Fig. 2(a) shows a (001)γ cross-section of the variant domain structure when 
the α’ volume fraction is 10%. The distributions of the equivalent plastic strain and dislocation density 
on the corresponding (001)γ cross-section are shown in Fig. 2(b) and 2(c), respectively. Note that 
dislocations are assumed to occur at places where the spatial gradient of ( ) ( )

α' ( , )i mp tr   and ( )
γ ( , )np tr  

exists [3], and the dislocation density is calculated as 
 

( ) ( ) ( ) ( ) ( ) ( )3
α' α' γ γ

( ) ( ) ( )
1 α' γ

( , ) ( , )
( , )

i m i m n n

i m n
i m n

p t p t
t



 
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n r n r
r

b b
. (9) 

 
We see from Fig. 2(b) that the plastic strain is large in 
the interior of the α’ variant domains. Furthermore, it 
can be confirmed that the plastic strain also occurs in the 
γ phase near the interface between the α’ and γ phases. 
On the other hand, in contrast to the plastic strain 
distribution, the dislocation density is high at interfaces 
between different α’ variant domains (Fig. 2(c)). The 
slip deformation of the α’ phase during the MT is 
presumed to cause the rotation of the crystallographic 
orientation of the α’ phase. This might have an important 
role in the formation process of the Kurdjumov‒Sachs 
orientation variants in low-carbon steels [17].  
 Fig. 3 shows the multi-variant domain structure and 
each variant domain structure of the α’ phase simulated 
at 600 K when the yield stress is assumed as y  = 400 
MPa. It can be seen that the α’ phase grows along the 

Fig. 1. Simulation results of martensitic transformation at 600 K. The yield stress is assumed 
as y  = 0 MPa. Three different colors represent three tetragonal variants of the α’ phase. 

't  represents the dimensionless time step in the numerical analysis. 

Fig. 2. (001)γ cross-section of the variant domain structure when the α’ volume fraction is 
10% (a), distribution of the equivalent plastic strain (b), and distribution of the dislocation 
density (c). 

Fig. 3. Multi-variant domain structure and 
each variant domain structure of the α’ phase 
simulated at 600 K. The yield stress is 
assumed as y  = 400 MPa. 
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(111)γ plane and the (111)γ habit plane is formed. Furthermore, 
it is interesting to note that the interface between different α’ 
variant domains is also formed near the (111)γ plane. This 
characteristic morphology of the α’ variant domain structure is 
simulated only when the slip deformation is considered in both 
of the α’ and γ phases. In our simulations at two temperatures 
(650 K and 700 K) and under various yield stress conditions 
(0~500 MPa), the formation of the (111)γ habit plane is clearly 
observed when the simulation was performed at 600 K and the 
yield stress is assumed as y  = 300~500 MPa. 
 We counted the total number of isolated variant domains 
on {100}γ cross-sections and used it as a measure of the α’ 
variant domain size. Fig. 4 shows the effect of the yield stress 
magnitude on the total number of isolated α’ variant domains 
on 192 cross-sections. It is seen that at 650 K, the variant 
domain size decreases with increasing the yield stress 
magnitude. On the other hand, at 700 K, the variant domain 
size is not so influenced by the yield stress condition. When 
the transformation temperature is high, the driving force for 
the MT is small and the transformation is slowed down. This 
would secure sufficient time for the slip deformation during 
the MT and would lead to the increase in the amount of plastic 
strain in the α’ phase. It is presumed that at 700 K, a large 
amount of plastic strain in the α’ phase relaxes the elastic 
energy associated with the MT and decreases the tendency of 
self-accommodation. 
 
4. CONCLUSIONS 
 Phase-field simulations were performed to examine the effect of the yield stress magnitude on the 
MTs at 650 K and 700 K in Fe-0.1mass%C steel. Obtained results are summarized as follows: (1) when 
the yield stress is assumed as y  = 300~500 MPa at 600 K, interfaces between different α’ variant 
domains are formed near the (111)γ plane; (2) the plastic strain is large in the interior of the α’ variant 
domains; (3) the dislocation density is high at interfaces between different α’ variant domains; (4) the 
variant domain size of the α’ phase decreases with increasing the yield stress magnitude at 650 K, but it 
is independent of the yield stress condition at 700 K. 
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Fig. 4. Effect of yield stress 
magnitude on the total number of 
isolated α’ variant domains on {100}γ 

cross-sections. 
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